最新同济六版高数第四章第4节课件ppt课件.ppt
《最新同济六版高数第四章第4节课件ppt课件.ppt》由会员分享,可在线阅读,更多相关《最新同济六版高数第四章第4节课件ppt课件.ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、同济六版高数第四章第同济六版高数第四章第4节课节课件件一、有理函数的积分有理函数的形式当nm时, 称这有理函数是真分式; 而当nm时, 称这有理函数是假分式. 有理函数是指由两个多项式的商所表示的函数, 即具有如下形式的函数: mmmmnnnnbxbxbxbaxaxaxaxQxP11101110)()(, 提示: 解 例3 例 2 求dxxxx3222. 解 dxxxx3222dxxxxxx)3213322221(22 dxxxdxxxx321332222122 2222)2() 1() 1(332) 32(21xxdxxxxd Cxxx21arctan23) 32ln(212. dxxxx3
2、222dxxxxxx)3213322221(22 分母是二次质因式的真分式的不定积分 321332221323)22(213222222xxxxxxxxxxx321332221323) 22(213222222xxxxxxxxxxx321332221323) 22(213222222xxxxxxxxxxx. xxxd)4)(1(22)4() 1(22xx例4. 求求.d4555222423xxxxxxIxxxxxId4552243xxxxd455224245)55d(212424xxxx45ln2124xx2arctan21xCxarctan解解:说明说明: 将有理函数分解为部分分式进行积分虽
3、可行,但不一定简便 , 因此要注意根据被积函数的结构寻求简便的方法. 例5. 求求解解: 原式xxd14) 1(2x) 1(2 x211d4xx2arctan2211xx21221 ln21xx21xxCxxxxd12122121xxxxd121221212)(2121xx)d(1xx2)(2121xx)d(1xx 注意本题技巧注意本题技巧xx21arctan2212Cxxxx1212ln24122)0( x按常规方法较繁按常规方法较繁按常规方法解:1d4xx第一步 令)(1224dxcxbxaxx比较系数定 a , b , c , d . 得) 12)(12(1224xxxxx第二步 化为部
4、分分式 . 即令) 12)(12(111224xxxxx121222xxDxCxxBxA比较系数定 A , B , C , D .第三步 分项积分 .此解法较繁 !二、可化为有理函数的积分举例 三角函数有理式是指由三角函数和常数经过有限次四则运算所构成的函数. 用于三角函数有理式积分的变量代换 三角函数有理式的积分 设2tanxu, 则有 222122tan12tan22sec2tan22cos2sin2sinuuxxxxxxx222122tan12tan22sec2tan22cos2sin2sinuuxxxxxxx222122tan12tan22sec2tan22cos2sin2sinuux
5、xxxxxx222122tan12tan22sec2tan22cos2sin2sinuuxxxxxxx, 222222112sec2tan12sin2coscosuuxxxxx222222112sec2tan12sin2coscosuuxxxxx222222112sec2tan12sin2coscosuuxxxxx. 提示: 解 令2tanxu, 则212sinuux, 2211cosuux. 例4 例 4 求dxxxx)cos1 (sinsin1. 解 令2tanxu, 则 uxarctan2, duuuuuuuudxxxx2222212)111 (12)121 ()cos1 (sinsin
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 同济 六版高数 第四 课件 ppt
限制150内