2022年根据学生需求设计教学内容 .pdf
《2022年根据学生需求设计教学内容 .pdf》由会员分享,可在线阅读,更多相关《2022年根据学生需求设计教学内容 .pdf(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 根据学生需求设计教学内容今天我将和大家一起分享全国特级教师刘德武老师的一个讲座:根据学生需求设计教学内容。为什么要谈这个话题呢?老师们备课一般都会有一些根据的,一般有三个根据,一是根据教学内容;二是根据新课标,一些新的教学理念、教学思想;第三个呢是根据以往的教学经验。我们的经验往往都是经过一些实践考验了的,被证明行之有效的,所以不要对经验全盘否认,但是经验主义是不好的,因为他只凭经验本身。所以根据以往经验来备课我觉得还是值得提倡的,不过总觉得缺点什么,但缺点什么呢?很多老师,特别是青年教师缺少对学生需求的研究,这一点缺的比较明显,所以课上出来以后,备出来以后,缺乏针对性,不仅仅是知识的针对
2、性,包括方法的针对性。所以课上出来以后,让你听起来特别难受,特别替他紧张、替他揪心。他自己也很难受,上一节课如同办了一件多大的事似的,累得不得了。就因为师生之间很难到达默契,老师学生都不轻松,老师问出的话,同学们不知道照应,同学提出的问题,老师不知道同学说的什么。什么原因呢?我觉得其中一个最重要的原因就是老师在备课的时候,没有好好的钻研学生,他们在学习进程当中,他们在各个方面的需求是什么。想得不够,研究得不够,所以备课当中呢,这个根据就太薄弱了,因此课就上得比较生涩,所以呢,我就想谈一谈这个话题。第一呢,就是根据兴趣需求设计教学内容,激发情感动力。我们设计的这个情境,能够激发起学生的兴趣当然很
3、好,但是一定要注意,我们所激发的学生的这个兴趣一定和我们讲述的内容紧密相结合。如果是情境归情境,内容是内容,两张皮的话,同学的兴趣再多浓厚,当我们拿出知识的时候,他又索然无味了,那这个情境就不如不创的好,这个兴趣也就是贴上去的了。所以有趣的情境,同学们兴趣的激发一定是与所教内容是同步的才行,下面看一个例子。CAI 这是一张漂亮的小猴子,蹦跳着小猴还有一个长长的尾巴,而且呢,小猴的身体在正六边形上,它的尾巴在正四边形上,我们会跟同学们说,“同学们请看,这是一个很漂亮的猴子,小猴的身体在正六边形上,它的尾巴在正四边形上,现在我们如果把它滚动起来,同学们看,这叫滚动一次,这叫滚动两次。” 边说边演示
4、然后问同学,“大家猜猜看,小猴的尾巴至少要滚动多少次,尾巴就可以回到小猴的身上呢?”学生们可能说或者是应该说几次?我们当老师的要会猜学生他们会猜六次。那我们就开始滚吧。看清楚啊,一次、两次、三次、四次、五次、六次。转六次成了这个样子了,同学们一开始信誓旦旦,说六次,现在他们都迷惑不解,这是怎么回事呀?为什么转回来了尾巴怎么冲这边呀?于是有同学就会猜了,“老师, 6 次不行得 12 次。 ”于是再转动一圈,12 次以后,尾巴就回到小猴子身上了。 于是就问同学们想不想研究,学生说想, 于是就发学具, 发的什么小乌龟呀、狮子呀、马呀等等,让同学们去转动,然后去把数据都写在黑板上,像这个小猴子身体在六
5、边形上就写6,尾巴在四边形上就写4,需要转动12 次就在后面写12.这个狮子呢,身体在正9 边形上,尾巴在正六边精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 11 页2 形上,就写 9 和 6,然后呢需要转18 次,就在后面写18。小乌龟是正五边形、正四边形,要转20 次。把这些数据都写下来,让同学们找找这里的规律。各自汇报后,同学们就会发现,如果以第一个为例的话,转动的次数一定是六的倍数才能回来,而且,尾巴还得非要是这个状态,一定是4 的倍数。所以这个数就应该是6和 4 公共的、共同的、公有的倍数。我们把这样的数叫作6 和 4 的公
6、倍数。如果我们继续转下去,不是转12 次,下一回再转回来需要几次,学生就会想到24 次、36 次、48 次那么所有这些数都是6 和 4 的公倍数,其中只有12 最小,它是这些公倍数数中最小的一个,我们就把它叫作最小公倍数。这个转呀转呀就特别兴趣盎然的,这个活动学生的积极性特别高,而这个内容与要教的最小公倍数的特点是紧密相连的。第二个方面,根据知识需求设计教学内容,满足求知愿望。知识需求同学们往往不会主动提出来,说老师今天我想学什么什么,老师您讲讲那个得了。一般来说不可能。那么这个知识需求指的是什么呢?指的是学生在学习知识的过程当中,老师能够多少有一点预见性,预见学生在学习知识的时候他在知识上可
7、能会有哪些不顺的的地方。可能会有哪些个震撼。老师能够预见到就能够帮助学生在学习时克服这些难点,使他们学习更顺更简单,当然就能够满足他的求知欲望了是吧。先举个例子, 一位三年级老师讲年月日,他出了这样一道练习题挺有意思的,他说小明在外婆家连续住了62 天正好是两个月,这是哪两个月呢?问题一出,老师们先猜猜,同学们会说哪两个月呢?听课的时候,同学们几乎都说7 月 8 月。一个举手说7 月 8 月,老师说对吗?对然后把手都放下来了,教室里安静极了,一点声音都没有。然后老师也不往下讲了。就用俩儿眼睛搜寻着, 三年级的同学们也懂,老师不往下讲课, 拿大眼珠子在我们身上转,说明什么?两个原因,第一,刚刚的
8、答案是错误的,可是7 月 8 月都是大月, 31 天, 31 加 31 是 62 呀。没错呀。第二个原因就是除了一个正确答案之外还有另一个正确答案。还有吗?(扳指头数)一、三、五、七、八、十、腊,没有了,没有了老师他怎么还不讲呢?正在纳闷的时候,有一个小女孩举手了,一个比较高的坐在后面的女孩,老师说,你来说说看,这小女孩站起来细声细语地说:“老师还有1 月和 12 月呢。 ”多好的答案呀,对呀,还有1 月和 12 月呢,但是多数孩子还不知道,还是眼巴巴地直盯着老师。因为他不得其解,他不知道为什么12 月 1 月也行,他不懂归不懂,但他不敢问老师为什么?敢问老师为什么的那是最好了,对吧,但孩子他
9、不敢问,他不自信,那怎么办呢?只有一个方法,我不吱声,我耐心等待,反正你老师总会解释的,那是好好听就得了。所以他就不言语了。所以我们老师上课的时候千万别误会了那些不言语的同学,因为他不言语嘛那是在进行思想斗争。这个例子它好在哪里呢?它使一个小小知识显得特别的辩证,特别的完整。是吧,而我们的同学往往不会有着需求说我想深入理解什么叫连续。可能有的老师也会只答7 月 8 月的。为什么呢?因为我们成年人理解的什么叫连续,也就是那1 跟 2 连续, 3 跟 4连续,却很少人想到,1 和那 12 居然在特定条件下也可以是连续的。更何况年月它不是钟表,钟表它给人视觉,就是一圈,11、12、1、2 所以 12
10、 和 1 它是连续的,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 11 页3 年历呢,我们买的日历往往都是1、2、3、4、5、6、7、8、9、10、11、12 完了一扔,重买一张,所以今年 12 月和明年 1 月连着的很少。本来年历是连续的,这没有问题,但由于月历它是一张一张的,年历它是一个一个的,它就人为地把它割裂开来了。影响了人的思维, 所以我认为这位老师设计得好。就为学生完整的理解知识就创造了条件。第三,根据思维内容设计教学内容,促进思维发展。以三角形三边关系为例来说一下。大家都知道,这是课程改革以后的新内容,所以大家对它特别
11、感兴趣,好多人都选它上公开课。当时刘老师指导他们区里一个老师上这节课,设计了两个练习。第一个是判断能否组成三角形,第一组是3、5、7,当然可以,两边之和大于第三边。第二个2、3、8,不可以,因为2+3 小于 8,所以不可以。往往我们教学生到这儿就可以结束了,为什么呢?因为到达教学目标了呀。那我就想学生如果只能判断可以或者不可以还是不够的。人在问题面前应该有个能动性,就像第二组2、3、8,不可以,我就想要培养学生改造的能力。能不能把它改造成可以的呢?所以就把同学们分成三组,一般我们上课都分成三大组,第一组改2,3、8 不动;第二组改3, 2、8 不动;第一组改 8,3、2 不动;怎样把这些数改一
12、改, 就让它可以围成三角形。就说改 2 吧。要把它改成几呢?第一个同学说,把2 改成 6。可以吗?学生说可以,因为3+6=9,大于 8,第二个同学说5,5+3=8,那不行。7 可以吧?可以3+78,8 呢?也行。 有同学就急于概括了,老师,大于等于 6的都行。 老师们,你说,大于等于6 的都行吗?对,不都行。四年级小学生他的思维需要从量变到质变这样一个过程。他会觉得 5 不行,6、7、8 都可以, 当然 9 也可以, 10 也可以。 因为 3+108。有人说 11 也可以, 3+118,这时候有同学就说话了,不可以!一石激起千层浪, 还会有同学想不到,为什么11 就不可以呢 ?那个同学就说了,
13、 看 3+118 当然可以, 但是 3+8=11,11 与 11 相等,不能构成三角形。当时同学们就“哇”的一声全明白了。为什么说这个呢?因为我们小学数学教材里有从不同角度不同方向看问题,从不同角度不同方向看一个数学问题,那才是这节课真正的价值所在。同一个问题,你换个角度看,那就不可以了, 所以就设计这样一个练习。第二个练习呢,演示课件 是三角形的一条边是12 厘米,其余两条边的和是14 厘米。这两条边分别是和 。同学们往往第一个爱说1 和 13。但是很快会遭到同学们的反对。 因为 1+12=13,构不成三角形。 但是开了个好头, 接下去他会说2和 12、3 和 11、4 和 10、5 和 9
14、、6 和 8、7 和 7 都可以。我们一开始备课就备到这儿,试上了两次,效果很好。同学们很顺利就把答案都给找出来了。而且很好看,在黑板上写成一竖行,1、2、3、4、5、6、7 拐个弯是 8、9、10、11、12、13。像个数学模型,很整齐很完整而且答案不难,还都是对的。我们就觉得这个练习很好。后来我回家想,还是觉得不太理想,为什么呢?同学们可以根据这一组组的数据证明他们是可以围成三角形的。但这仅仅是从理论层面上做出的判断。都没有看到这几个三角形,多么遗憾!本来我们数学课就讲究数形结合。可是同学们居然没有看到这几个三角形围成的样子,不完美!所以我就想要把这些三角形都在同学们面前展示出来就更好了。
15、我就拿笔在纸上画,尽可能的让画的数据精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 11 页4 与这里的相吻合。结果画好了,还挺好看。是这样的,老师们看清楚课件演示一个三角形,没什么好看的,多了以后确实很好看。这是我们固定好的12 厘米的边。那另外的两根呢?2、12,是一个躺着的等腰三角形,还有一个是3 和 11,这是一个三角形,还有12、4 和 10,12、5 和 9,12、6 和8,12、7 和 7,这也是一个等腰三角形。那边还有一些与这边对称的三角形,12、6 和 8,12、5 和 9,12、4 和 10,以及 12、3 和 11
16、。排山倒海似的,挺好看的。然后我们还用一道光滑的弧线把它们连起来了。然后问学生像什么?老师们你们猜学生会说像什么?学生们会说像汉堡包,小孩啊,总是对吃的东西情有独钟,当然也有说像渔网、像太阳帽的。北京孩子会说像那中国大剧院。到过北京的人都知道,人民大会堂紧挨着就是中国大剧院,我们会让同学们从半空的角度看一看这个建筑,学生一看,“哇!”那可是壮观极了。其实就同学们一看到它的时候,就能感受到小小三角形给他带来的震撼,他都会油然的想到原来小小三角形原来这么壮观!和世界上这么伟大的建筑这么一聚,他会提升自己学习数学的价值意义的理解。第四,根据认知误区设计教学内容,防止造成隐患。学生的认知误区好似是常常
17、看到的现象,它的来历往往有两个,一个来自学生在自己学习的过程当中容易形成的误区,再一个呢,就是我们老师给的误区,老师教学不当造成的误区,其实这更可怕了。举个例子,二年级讲轴对称图形,有一个老师讲这节课,整个这节课有一个问题,一个共同的问题。先不说是什么问题,先把我针对这节课给他提的建议汇报给大家,大家判断一下,您就大概知道他的问题是什么了。我给他提了这个建议,我说你出示一组电子表盘,让同学们判断它是不是对称图形。 当然在上课的时候千万别这么问,说同学们看20:20 是对称图形吗?其实它不是个几何图形,所以你上课这么说就觉得别扭。就好比你说我这个是长方体吗?它就不严谨,它不是个长方体,。就是说就
18、是个物体,而长方体是一个抽象的数学模型,他们不能划等号的,你只能说我们把看做一个长方体,你不能说是个长方体。所以也不要说它是不是个对称图形,而应该说,如果我们把它看做一个图形的话,它是不是个对称图形呢?应该这么说,就比较严谨了。老师您说它是对称图形吗?它不是。两边一样,但如果对折它不能完全重合,对不对?20:05是对称图形吗?这个是,0和 0 这个没有问题,2和 5 有同学会有障碍,有个老师一听,说这个建议挺好的,他也挺聪明,用纸剪了一个2,一个 5,因为有同学看不出来,他就说同学们看,把2 转转转,转到5 这儿了。呀,正好合上了。同学们一看呀挺好的,有个同学就情不自禁的说,跟照镜子一样。20
19、:05 是对称图形,没问题。 12:51 是吗?是,大家再猜,18:18 是吗?有说是有说不是的,议论开了,对, 18:18 也是对称图形,很显然,不过对称轴的方向变了。好了,之前那个老师上课他的问题就是他所出示的所有图形都是左右对称的,什么蝴蝶、 蜻蜓、北京天安门、 铁塔包括数字、 字母以及有些国家的国旗等等,正是琳琅满目,二三十个都是左右对称的。虽然老师这节课自始至终没有提左右二字,可你给同学留精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 11 页5 下的印象太深了。老师们你想啊,如果我今天不出前三个,上来就出18:18,会有更多
20、的老师会冷静的思考, 18:18 是不是对称的,我先左右看看,在上下看看。你倒霉就倒霉在我前三个问题上,都诱惑您去观察左右的角度。您想,就仨例子就把你忽悠了,您还是成年人,您还是教数学的,这面对的是儿童,二年级孩子,他出现的一直是左右对称的,你说这孩子能不走进误区吗?最后11:11 是不?笑有老师这么着看,是的。它既可以上下折也可以左右折,人家还有两条对称轴呢。所以这个误区的问题呀,老师教的时候,事先一定要考虑到我的教学会不会给孩子带来这个方面或那个方面的误区。第五,根据解决问题的需求设计教学内容,提高理论联系实际的能力。以圆的周长为例, 大家看,有一个圆形表盘的残片,让你来计算整个表盘的周长
21、大约是多少厘米。不是测量这残片,是测量它所在圆的周长是多少。同学们方法有很多,有的利用刻度线延长找圆心;有的用对折再延长的方法找圆心;有的说表盘的刻度是均匀的,8 到 7 之间的长度应该是整个周长的十二分之一,量出这段弧线的长再乘12 就行了;有的说把表盘残片在直尺上滚一下,量一下7 到 8的距离,再根据这个距离算周长。这一个学生正好弥补了前面一个学生的方法,你那量 7 到 8 有多少,然后再乘以12,但有一个问题就是它是弯的不是直的,量它的线段然后乘以12 也可以,但它是近似的,不是准确的。 但是这个学生的方法就解决了这个问题,把这个残片的弧线在直直的尺子上一滚动,就可以准确的量出这段弧线的
22、长度,是6 到 8 的长度,再乘以6 就可以了。我觉得这里呢思维含量很多,还有两种值得说学生的方法是这样,他一边描述一边比划,说把这个残片按在一张大纸上,这样用笔把它描下来, 然后把它挪开一点,再描,再挪,再描,就这么挪一点描一点,就把它都描出来了;还有一种方法,因为每一个同学都发了这样一个残片,所以就有同学用几个拼在一起,拼成一个完整的。我们课程改革十几年了,我们都在说什么自主探究啊,合作交流啊,我们的孩子们能想到合作,把它拼成个完整的再量出来。这从不同的角度都能促进学生思维的发展,不管用什么方法都是为了找到局部与整体的关系。第六,发现和满足理性需求设计教学内容,培养学生的数学意识。发现和满
23、足理性需求设计教学内容,要靠我们老师凭自己的经验和智慧、理论和责任去挖掘。举个例子,去年五月份在河南洛阳举行的小数年会,北京的一个老师上的小数加减法,当时我们还有好多老师备这节课时有顾虑,就跟我商量,上小数加减行吗?这么传统的计算课能上出彩吗?我说行,其中有几个亮点,第一个就是学生自己编题,就不说了,反正学生自己编题还得自己把它算出来。老师把它们一个个都板书在黑板上。还有一个亮点就是小数点对齐,这是这节课的重点, 我想问一句话,老师们,小数点对齐这五个字,您觉得那个字最重要?我认为是“对” ,我知道你为什么说 “齐” , “齐”精选学习资料 - - - - - - - - - 名师归纳总结 -
24、 - - - - - -第 5 页,共 11 页6 是目标。而“对”是过程,是解决能不能齐的操作,而小学生缺什么呢?他们缺两点,缺对得齐与对不齐的比照,我们书上往往呈现出来的都是对得齐的,而对不齐的现象出现的很少,所以小学生往往缺这个比照。第二个是什么?缺“对” 。 “平板大卡车上,然后,请司机师傅开过来,老师说一句话,请你注意,你觉得什么时候该停,你就喊“停!”司机师傅一定会把车停下来的。你想同学们那精神能不精神百倍嘛。一按鼠标,结果没人喊停,车却停了,大家都很纳闷。老师说谁喊停了?同学们特委屈,说没喊没喊。没喊它怎么停了?同学们说它错了。就请同学说它怎么错了?同学说,老师他把它当整数减法了
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年根据学生需求设计教学内容 2022 年根 学生 需求 设计 教学内容
限制150内