2022年概率论与数理统计公式整理大全 .pdf
《2022年概率论与数理统计公式整理大全 .pdf》由会员分享,可在线阅读,更多相关《2022年概率论与数理统计公式整理大全 .pdf(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载第一章随机事件和概率(1) 排列组合公式从 m个人中挑出 n 个人进行排列的可能数。从 m个人中挑出 n 个人进行组合的可能数。(2) 加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由 n 种方法来完成,则这件事可由m+n 种方法来完成。乘法原理(两个步骤分别不能完成这件事):m n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由 n 种方法来完成,则这件事可由m n 种方法来完成。(3) 一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4) 随机试验和随机事件如果
2、一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。(5) 基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:每进行一次试验,必须发生且只能发生这一组中的一个事件;任何事件,都是由这一组中的部分事件组成的。这样一组事件中的每一个事件称为基本事件,用来表示。基本事件的全体,称为试验的样本空间,用表示。一个事件就是由中的部分点(基本事件)组成的集合。通常用大写字母 A,B,C ,表示事件,它们是的子集。为必然事件,? 为不可能事件。不可能
3、事件( ?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件( )的概率为 1,而概率为 1 的事件也不一定是必然事件。(6) 事件的关系与运算关系:如果事件 A的组成部分也是事件B的组成部分,( A发生必有事件 B发生):如果同时有, ,则称事件 A与事件 B等价,或称 A等于 B:A=B 。A、B中至少有一个发生的事件:A B,或者 A+B。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 23 页学习必备欢迎下载属于 A而不属于 B的部分所构成的事件,称为A与 B的差,记为 A-B,也可表示为 A-AB或者 ,它表示
4、A发生而 B不发生的事件。A、B同时发生: A B,或者 AB 。A B=? ,则表示 A与 B不可能同时发生,称事件 A与事件 B互不相容或者互斥。基本事件是互不相容的。-A 称为事件 A的逆事件,或称 A的对立事件,记为。它表示 A不发生的事件。互斥未必对立。运算:结合率: A(BC)=(AB)C A(BC)=(AB)C分配率: (AB)C=(AC)(BC)(AB)C=(AC)(BC)德摩根率:,(7) 概率的公理化定义设 为样本空间,为事件,对每一个事件都有一个实数 P(A),若满足下列三个条件:1 0 P(A)1,2 P( ) =1 3 对于两两互不相容的事件, ,有常称为可列(完全)
5、可加性。则称 P(A)为事件 的概率。(8) 古典概型1 ,2 。设任一事件,它是由组成的,则有P(A)= = (9) 几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,。其中 L 为几何度量(长度、面积、体积)。(10)加法公式P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)0 时,P(A+B)=P(A)+P(B) (11)减法公式P(A-B)=P(A)-P(AB) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,
6、共 23 页学习必备欢迎下载当 B A 时,P(A-B)=P(A)-P(B) 当 A= 时,P( )=1- P(B) (12)条件概率定义 设 A、B是两个事件,且P(A)0,则称 为事件 A发生条件下,事件 B发生的条件概率,记为。条件概率是概率的一种,所有概率的性质都适合于条件概率。例如 P(/B)=1 P( /A)=1-P(B/A) (13)乘法公式乘法公式:更一般地,对事件A1,A2,An,若 P(A1A2An-1)0,则有 。(14)独立性两个事件的独立性设事件 、 满足 ,则称事件、 是相互独立的。若事件 、 相互独立,且,则有若事件 、 相互独立,则可得到与 、 与 、 与 也都
7、相互独立。必然事件和不可能事件 ? 与任何事件都相互独立。? 与任何事件都互斥。多个事件的独立性设 ABC 是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B) ;P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足 P(ABC)=P(A)P(B)P(C) 那么 A、B、C相互独立。对于 n 个事件类似。(15)全概公式设事件 满足1 两两互不相容,2 ,则有。(16)贝叶斯公式设事件 , , 及 满足精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 23 页学习必备欢迎下载1 , , 两两互不相容,0,
8、1,2, ,2 , ,则,i=1 ,2,n。此公式即为贝叶斯公式。,( , , ),通常叫先验概率。,( , , ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。(17)伯努利概型我们作了次试验,且满足u 每次试验只有两种可能结果,发生或 不发生;u 次试验是重复进行的,即发生的概率每次均一样;u 每次试验是独立的,即每次试验发生与否与其他次试验 发生与否是互不影响的。这种试验称为伯努利概型,或称为重伯努利试验。用 表示每次试验发生的概率,则发生的概率为,用 表示 重伯努利试验中 出现 次的概率, 。第二章随机变量及其分布(1)离散型随机变量的分布律设离散
9、型随机变量的可能取值为 Xk(k=1,2, )且取各个值的概率, 即事件(X=Xk)的概率为P(X=xk)=pk,k=1,2, ,则称上式为离散型随机变量的概率分布或分布律。有时也用分布列的形式给出:。显然分布律应满足下列条件:(1) , ,(2) 。(2)连续型随机设 是随机变量的分布函数,若存在非负函数,对任意实数,有,则称 为连续型随机变量。称为 的概率密度函数或密度函数,简称概率密度。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 23 页学习必备欢迎下载变量的分布密度密度函数具有下面4 个性质:1。2。(3)离散与连续型随机变
10、量的关系积分元 在连续型随机变量理论中所起的作用与在离散型随机变量理论中所起的作用相类似。(4)分布函数设 为随机变量,是任意实数,则函数称为随机变量 X的分布函数,本质上是一个累积函数。可以得到 X落入区间的概率。分布函数表示随机变量落入区间 ( ,x 内的概率。分布函数具有如下性质:1;2是单调不减的函数,即时,有 ;3,;4,即 是右连续的;5。对于离散型随机变量,;对于连续型随机变量,。(5)八0-1P(X=1)=p, P(X=0)=q 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 23 页学习必备欢迎下载大分布分布二项分布在
11、 重贝努里试验中,设事件发生的概率为。事件 发生的次数是随机变量,设为,则 可能取值为。,其中 ,则称随机变量服从参数为, 的二项分布。记为。当 时, , ,这就是(0-1)分布,所以( 0-1)分布是二项分布的特例。泊松分布设随机变量的分布律为, , ,则称随机变量服从参数为的泊松分布,记为或者 P( ) 。泊松分布为二项分布的极限分布(np=,n)。超几何分布随机变量 X服从参数为 n,N,M 的超几何分布,记为H(n,N,M) 。几何分布,其中 p0,q=1-p。随机变量 X服从参数为 p 的几何分布,记为G(p)。均匀分布设随机变量的值只落在 a ,b 内,其密度函数在a ,b 上为常
12、数,即axb其他,则称随机变量在a ,b 上服从均匀分布,记为XU(a,b) 。分布函数为axb0, xb 。当 ax1x2b时,X落在区间()内的概率为。指数分布 , 0, , 其中 ,则称随机变量X服从参数为的指数分布。X的分布函数为 , x0 。记住积分公式:正态分布设随机变量的密度函数为,其中 、 为常数,则称随机变量服从参数为、 的正态分布或高斯精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 23 页学习必备欢迎下载(Gauss )分布,记为。具有如下性质:1的图形是关于对称的;2当 时, 为最大值;若 ,则 的分布函数为。参
13、数 、 时的正态分布称为标准正态分布,记为,其密度函数记为, ,分布函数为。是不可求积函数,其函数值,已编制成表可供查用。(-x) 1-(x) 且 (0) 。如果 ,则 。(6)分位数下分位表:;上分位表:。(7)函数分布离散型已知 的分布列为,的分布列(互不相等)如下:,若有某些相等,则应将对应的相加作为的概率。连续型先利用 X的概率密度 fX(x) 写出 Y的分布函数 FY(y) P(g(X) y) ,再利用变上下限积分的求导公式求出fY(y) 。第三章二维随机变量及其分布(1)联合离散型如果二维随机向量(X,Y)的所有可能取值为至多可列个有序对( x,y ),则称为离散型随精选学习资料
14、- - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 23 页学习必备欢迎下载分布机量。设 = (X,Y)的所有可能取值为,且事件 = 的概率为 pij, 称为 = (X,Y)的分布律或称为X和 Y的联合分布律。联合分布有时也用下面的概率分布表来表示:YXy1y2yjx1p11p12p1jx2p21p22p2jxipi1这里 pij具有下面两个性质:(1)pij0(i,j=1,2,);(2)连续型对于二维随机向量,如果存在非负函数,使对任意一个其邻边分别平行于坐标轴的矩形区域 D ,即 D=(X,Y)|axb,cyx1时,有 F (x2,y )F(x1,y
15、); 当 y2y1时,有 F(x,y2) F(x,y1); (3)F(x,y )分别对 x 和 y 是右连续的,即(4)(5)对于. (4)离散型与连续型的关系(5)边缘分布离散型X的边缘分布为;Y的边缘分布为。连续型X的边缘分布密度为Y的边缘分布密度为(6)条件分布离散型在已知 X=xi的条件下, Y取值的条件分布为在已知 Y=yj的条件下, X取值的条件分布为连续型在已知 Y=y的条件下, X的条件分布密度为;在已知 X=x的条件下, Y的条件分布密度为精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 23 页学习必备欢迎下载(7)
16、独立性一般型F(X,Y)=FX(x)FY(y) 离散型有零不独立连续型f(x,y)=fX(x)fY(y) 直接判断,充要条件:可分离变量正概率密度区间为矩形二维正态分布0 随机变量的函数若 X1,X2, Xm,Xm+1, Xn相互独立, h,g 为连续函数,则:h(X1,X2, Xm)和 g(Xm+1, Xn)相互独立。特例:若 X与 Y独立,则: h(X)和 g(Y)独立。例如:若 X与 Y独立,则: 3X+1和 5Y-2 独立。(8)二维均匀分布设随机向量( X,Y)的分布密度函数为其中 SD为区域 D的面积,则称(X,Y)服从 D上的均匀分布, 记为(X,Y)U(D)。例如图 3.1 、
17、图 3.2 和图 3.3 。y1 D1O 1 x图 3.1 y精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 23 页学习必备欢迎下载D21 1 O 2 x图 3.2 yD3dcO a b x图 3.3 (9)二维正态分布设随机向量( X,Y)的分布密度函数为其中 是 5 个参数,则称( X,Y)服从二维正态分布,记为( X,Y)N(由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,即 XN (但是若 XN( ,(X,Y)未必是二维正态分布。(10)函数分布Z=X+Y 根据定义计算:对于连续型, fZ(z) 两个独
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年概率论与数理统计公式整理大全 2022 概率论 数理统计 公式 整理 大全
限制150内