最新同济大学线性代数习题课ppt课件.ppt
《最新同济大学线性代数习题课ppt课件.ppt》由会员分享,可在线阅读,更多相关《最新同济大学线性代数习题课ppt课件.ppt(54页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、同济大学线性代数习题课同济大学线性代数习题课提取第一列的公因子,得提取第一列的公因子,得.1111)(32222111xaaaxaaaxaaaaxDnnnniin 后后一一列列,得得倍倍加加到到最最列列的的将将第第列列,倍倍加加到到第第列列的的列列,将将第第倍倍加加到到第第列列的的将将第第)(1,3)(12)(11aaan . )()(11 niiniiaxaxaxaaaaaxaaaxaxDnniin 23122121111010010001)(评注评注本题利用行列式的性质,采用本题利用行列式的性质,采用“化零化零”的方法,逐步将所给行列式化为三角形行列式的方法,逐步将所给行列式化为三角形行列
2、式化零时一般尽量选含有的行(列)及含零较多化零时一般尽量选含有的行(列)及含零较多的行(列);若没有,则可适当选取便于化零的行(列);若没有,则可适当选取便于化零的数,或利用行列式性质将某行(列)中的某数的数,或利用行列式性质将某行(列)中的某数化为化为1 1;若所给行列式中元素间具有某些特点,则;若所给行列式中元素间具有某些特点,则应充分利用这些特点,应用行列式性质,以达到应充分利用这些特点,应用行列式性质,以达到化为三角形行列式之目的化为三角形行列式之目的,得,得提取公因子提取公因子行中行中行,并从第行,并从第行都加到第行都加到第、的第的第将将dcbaD 114324用降阶法计算用降阶法计
3、算例例计算计算.4abcdbadccdabdcbaD 解解,1111)(4abcdbadccdabdcbaD 列,得列,得列都减去第列都减去第、再将第再将第1432,0001)(4dadbdcdcbcacdcbcbdbabdcbaD 行展开,得行展开,得按第按第1.)(4dadbdccbcacdbcbdbadcbaD ,得得中中提提取取公公因因子子行行行行,再再从从第第行行加加到到第第把把上上面面右右端端行行列列式式第第dcba 112,011)(dadbdccbcacddcbadcbaD 列,得列,得列减去第列减去第再将第再将第12行展开,得行展开,得按第按第1)()( )(22cbdadc
4、badcba )()(dcbadcbadcbadcba ,001)(4dacbdccbdacddcbadcbaD dacbcbdadcbadcbaD )(评注评注本题是利用行列式的性质将所给行列本题是利用行列式的性质将所给行列式的某行(列)化成只含有一个非零元素,然后式的某行(列)化成只含有一个非零元素,然后按此行(列)展开,每展开一次,行列式的阶数按此行(列)展开,每展开一次,行列式的阶数可降低可降低 1阶,如此继续进行,直到行列式能直接阶,如此继续进行,直到行列式能直接计算出来为止(一般展开成二阶行列式)这种计算出来为止(一般展开成二阶行列式)这种方法对阶数不高的数字行列式比较适用方法对阶
5、数不高的数字行列式比较适用用加边法计算用加边法计算例例计算计算解解.21xaaaaxaaaaxaDnn 1111000111nnaxaaDaaxaaaax1111111nnaaaxDxx111110nnnaaaaxxxx1111niinnaaaaxxxx1211nniiax xxx用递推法计算用递推法计算例例计算计算.21xaaaaxaaaaxaDnn 解解拆拆成成两两个个行行列列式式之之和和列列把把依依第第DnnaaaaaxaaaaaxaaaaaxaDnn121 .000121xaaaxaaaaxaaaaxann .1121DxaxxxDnnnn 从从而而得得列列展展开开第第右右端端的的第第
6、二二个个行行列列式式按按列列加加到到第第倍倍分分别别列列的的将将第第右右端端的的第第一一个个行行列列式式,1, 2 , 1)1(, nnn ,0000000001121DxaaxaxaxDnnnn 由此递推,得由此递推,得.,2122121212211DxxxaxxxaxxxDDxaxxxDnnnnnnnnnnn 于于是是如此继续下去,可得如此继续下去,可得DxxxxxaxxxaxxxaxxxDnnnnnnn23142122121 )(21213142122121xxxaxaxxxxxaxxxaxxxaxxxnnnnnn ).(323112121xxxxxxxxxaxxxnnnn 时,还可改写
7、成时,还可改写成当当021 xxxn).111(12121xxxaxxxDnnn 评注评注.1 1 .1,1 1的的递递推推关关系系列列式式更更低低阶阶行行列列式式之之间间阶阶行行,建建立立比比阶阶更更低低阶阶的的行行列列式式表表示示比比用用同同样样形形式式的的阶阶行行列列式式时时,还还可可以以把把给给定定的的有有之之间间的的递递推推关关系系阶阶行行列列式式与与建建立立了了阶阶行行列列式式表表示示出出来来用用同同样样形形式式的的行行列列式式阶阶质质把把所所给给的的本本题题是是利利用用行行列列式式的的性性 nnDnDnDnDnnnnn用数学归纳法用数学归纳法例例证明证明.coscos210001
8、00000cos210001cos210001cos nDn 证证对阶数对阶数n用数学归纳法用数学归纳法.,2, 1,2cos1cos22cos11cos,cos 221结论成立结论成立时时当当所以所以因为因为 nnDD 得得展展开开按按最最后后一一行行现现将将的的行行列列式式也也成成立立于于阶阶数数等等于于下下证证对对的的行行列列式式结结论论成成立立假假设设对对阶阶数数小小于于,.,Dnnn.cos221DDDnnn ,)2cos( ,)1cos( ,21 nDnDnn由由归归纳纳假假设设;cos)2cos()2cos(cos)2cos()1cos(cos2 nnnnnnDn .结结论论成成
9、立立所所以以对对一一切切自自然然数数 n评注评注.,)1(1,)(, 21同型的行列式同型的行列式是与是与不不否则所得的低阶行列式否则所得的低阶行列式展开展开列列或第或第行行按第按第不能不能展开展开列列或第或第行行本例必须按第本例必须按第表示表示展开成能用其同型的展开成能用其同型的为了将为了将DnnDDDnnnn .,.,其猜想结果成立其猜想结果成立然后用数学归纳法证明然后用数学归纳法证明也可先猜想其结果也可先猜想其结果如果未告诉结果如果未告诉结果纳法来证明纳法来证明可考虑用数学归可考虑用数学归结论时结论时证明是与自然数有关的证明是与自然数有关的而要我们而要我们当行列式已告诉其结果当行列式已告
10、诉其结果一般来讲一般来讲计算行列式的方法比较灵活,同一行列式可计算行列式的方法比较灵活,同一行列式可以有多种计算方法;有的行列式计算需要几种方以有多种计算方法;有的行列式计算需要几种方法综合应用在计算时,首先要仔细考察行列式法综合应用在计算时,首先要仔细考察行列式在构造上的特点,利用行列式的性质对它进行变在构造上的特点,利用行列式的性质对它进行变换后,再考察它是否能用常用的几种方法换后,再考察它是否能用常用的几种方法小结小结当线性方程组方程个数与未知数个数相等、当线性方程组方程个数与未知数个数相等、且系数行列式不等于零时,可用克莱姆法则为且系数行列式不等于零时,可用克莱姆法则为了避免在计算中出
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 同济大学 线性代数 习题 ppt 课件
限制150内