《2022年高一数学科上学期知识点.docx》由会员分享,可在线阅读,更多相关《2022年高一数学科上学期知识点.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年高一数学科上学期知识点 即使我们的成果不是很好,但只要有心想要学习,那么我们就应当笨鸟先飞,所谓勤能补拙“没有人一诞生就是天才,他们都是经过艰苦的努力,才会胜利的。以下是我给大家整理的高一数学科上学期学问点,希望能帮助到你! 高一数学科上学期学问点1 1.函数的概念:设A、B是非空的数集,假如根据某个确定的对应关系f,使对于集合A中的随意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数.记作:y=f(x),xA.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)|xA叫做函数的值域.
2、留意:2假如只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必需大于零;(4)指数、对数式的底必需大于零且不等于1.(5)假如函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不行以等于零(6)实际问题中的函数的定义域还要保证明际问题有意义. 构成函数的三要素
3、:定义域、对应关系和值域 再留意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系确定的,所以,假如两个函数的定义域和对应关系完全一样,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一样,而与表示自变量和函数值的字母无关。相同函数的推断方法:表达式相同;定义域一样(两点必需同时具备) 值域补充 (1)、函数的值域取决于定义域和对应法则,不论实行什么方法求函数的值域都应先考虑其定义域.(2).应熟识驾驭一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解困难函数值域的基础。 3.函数图象学问归纳 (1)定义:在平面直角
4、坐标系中,以函数y=f(x),(xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(xA)的图象. C上每一点的坐标(x,y)均满意函数关系y=f(x),反过来,以满意y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C=P(x,y)|y=f(x),xA 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与随意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。 (2)画法 A、描点法:依据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最终用平滑的曲线将这些点连接起来
5、. B、图象变换法(请参考必修4三角函数) 常用变换方法有三种,即平移变换、伸缩变换和对称变换 (3)作用: 1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。 高一数学科上学期学问点2 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性;2.元素的互异性;3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
6、(3)集合中的元素是同等的,没有先后依次,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列依次是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:如我校的篮球队员,太平洋,大西洋,印度洋,北冰洋 1.用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 2.集合的表示方法:列举法与描述法。 二、集合间的基本关系 1.“包含”关系子集 留意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系(55,且55,则5=5) 实例:设A=x|x2-1=
7、0B=-1,1“元素相同” 结论:对于两个集合A与B,假如集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B 任何一个集合是它本身的子集。AA 真子集:假如AB,且A1B那就说集合A是集合B的真子集,记作AB(或BA) 假如AB,BC,那么AC 假如AB同时BA那么A=B 3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 三、集合的运算 1.交集的定义:一般地,由全部属于A且属于B的元素所组成的集合,叫做A,B的交集. 记作AB(读作”A交B”),即AB=x|xA,且xB. 2、并
8、集的定义:一般地,由全部属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:AB(读作”A并B”),即AB=x|xA,或xB. 3、交集与并集的性质:AA=A,A=,AB=BA,AA=A,A=A,AB=BA. 高一数学科上学期学问点3 指数函数 (1)指数函数的定义域为全部实数的集合,这里的前提是a大于0,对于a不大于0的状况,则必定使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5)可以看到一个明显的规律,就是当a从0趋向于无穷大的
9、过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。 (7)函数总是通过(0,1)这点。 (8)明显指数函数_。 对数函数 对数函数的一般形式为,它事实上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。 右图给出对于不同大小a所表示的函数图形: 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。 (1)对数函数的定义域为大于0的实数集合。 (2)对数函数的值域为全部实数集合。 (3)函数总是通过(1,0)这点。 (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。 (5)明显对数函数_。 高一数学科上学期学问点第7页 共7页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页
限制150内