2022年初二上册数学第一节教案范文.docx
《2022年初二上册数学第一节教案范文.docx》由会员分享,可在线阅读,更多相关《2022年初二上册数学第一节教案范文.docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年初二上册数学第一节教案范文 一份优秀的数学教案是老师上好一堂课的保障。数学教学效果,就必需创新课堂教学,而创新课堂教学的关键是编好数学教案。下面就是我整理的初二上册数学第一节教案,希望大家喜爱。 初二上册数学第一节教案1 一、学习目标:1.经验探究平方差公式的过程. 2.会推导平方差公式,并能运用公式进行简洁的运算. 二、重点难点 重点: 平方差公式的推导和应用 难点: 理解平方差公式的结构特征,敏捷应用平方差公式. 三、合作学习 你能用简便方法计算下列各题吗? (1)20011999 (2)9981002 导入新课: 计算下列多项式的积. (1)(x+1)(x-1) (2)(m+2
2、)(m-2) (3)(2x+1)(2x-1) (4)(x+5y)(x-5y) 结论:两个数的和与这两个数的差的积,等于这两个数的平方差. 即:(a+b)(a-b)=a2-b2 四、精讲精练 例1:运用平方差公式计算: (1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y) 例2:计算: (1)10298 (2)(y+2)(y-2)-(y-1)(y+5) 随堂练习 计算: (1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b) (4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)
3、(a-b)(a+b)(a2+b2) 五、小结:(a+b)(a-b)=a2-b2 初二上册数学第一节教案2 一、学习目标:1.使学生了解运用公式法分解因式的意义; 2.使学生驾驭用平方差公式分解因式 二、重点难点 重点: 驾驭运用平方差公式分解因式. 难点: 将单项式化为平方形式,再用平方差公式分解因式; 学习方法:归纳、概括、总结 三、合作学习 创设问题情境,引入新课 在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式. 假如一
4、个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法公式法. 1.请看乘法公式 (a+b)(a-b)=a2-b2 (1) 左边是整式乘法,右边是一个多项式,把这个等式反过来就是 a2-b2=(a+b)(a-b) (2) 左边是一个多项式,右边是整式的乘积.大家推断一下,其次个式子从左边到右边是否是因式分解? 利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式. a2-b2=(a+b)(a-b) 2.公式讲解 如x2-16 =(x
5、)2-42 =(x+4)(x-4). 9 m 2-4n2 =(3 m )2-(2n)2 =(3 m +2n)(3 m -2n) 四、精讲精练 例1、把下列各式分解因式: (1)25-16x2; (2)9a2- b2. 例2、把下列各式分解因式: (1)9(m+n)2-(m-n)2; (2)2x3-8x. 补充例题:推断下列分解因式是否正确. (1)(a+b)2-c2=a2+2ab+b2-c2. (2)a4-1=(a2)2-1=(a2+1)(a2-1). 五、课堂练习 教科书练习 六、作业 1、教科书习题 2、分解因式:x4-16 x3-4x 4x2-(y-z)2 3、若x2-y2=30,x-y
6、=-5求x+y 初二上册数学第一节教案3 一、学习目标: 1.使学生会用完全平方公式分解因式. 2.使学生学习多步骤,多方法的分解因式 二、重点难点: 重点: 让学生驾驭多步骤、多方法分解因式方法 难点: 让学生学会视察多项式特点,恰当支配步骤,恰当地选用不同方法分解因式 三、合作学习 创设问题情境,引入新课 完全平方公式(ab)2=a22ab+b2 讲授新课 1.推导用完全平方公式分解因式的公式以及公式的特点. 将完全平方公式倒写: a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2. 凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解 用
7、语言叙述为:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方 形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式. 由分解因式与整式乘法的关系可以看出,假如把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法. 练一练.下列各式是不是完全平方式? (1)a2-4a+4; (2)x2+4x+4y2; (3)4a2+2ab+ b2; (4)a2-ab+b2; 四、精讲精练 例1、把下列完全平方式分解因式: (1)x2+14x+49; (2)(m+n)2-6(m +n)+9. 例2、把下列各式分解因式: (1)3ax2+6a
8、xy+3ay2; (2)-x2-4y2+4xy. 课堂练习: 教科书练习 补充练习:把下列各式分解因式: (1)(x+y)2+6(x+y)+9; (2)4(2a+b)2-12(2a+b)+9; 五、小结:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方 形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式. 六、作业:1、 2、分解因式: X2-4x+4 2x2-4x+2 (x2+y2)2-8(x2+y2)+16 (x2+y2)2-4x2y2 45ab2-20a -a+a3 a-ab2 a4-1 (a2+1)2-4 (a2+1)+4 初二上册数学第一节教
9、案4 教学目标 1.等腰三角形的概念. 2.等腰三角形的性质. 3.等腰三角形的概念及性质的应用. 教学重点: 1.等腰三角形的概念及性质. 2.等腰三角形性质的应用. 教学难点:等腰三角形三线合一的性质的理解及其应用. 教学过程 .提出问题,创设情境 在前面的学习中,我们相识了轴对称图形,探究了轴对称的性质,并且能够作出一个简洁平面图形关于某始终线的轴对称图形,还能够通过轴对称变换来设计一些漂亮的图案.这节课我们就是从轴对称的角度来相识一些我们熟识的几何图形.来探讨:三角形是轴对称图形吗?什么样的三角形是轴对称图形? 有的三角形是轴对称图形,有的三角形不是. 问题:那什么样的三角形是轴对称图
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年初 上册 数学 第一节 教案 范文
限制150内