《1132多边形的内角和 (3).ppt》由会员分享,可在线阅读,更多相关《1132多边形的内角和 (3).ppt(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第十一章第十一章 三角形三角形天津市津南区教研室 冯玉娴 问题问题1 1 我们学校要建我们学校要建一个边长都是一个边长都是6 6 米,各角都米,各角都相等的十边形相等的十边形的大花坛,请的大花坛,请同学们一起来同学们一起来 设计图纸设计图纸 【问题问题2 2】 三角形的内角和等于三角形的内角和等于180180,正方,正方形的内角和等于形的内角和等于360360,那么任意四边形的内角,那么任意四边形的内角和是否也等于和是否也等于360360呢?证明你的结论呢?证明你的结论ABCD结论:四边形的内角和等于结论:四边形的内角和等于360360. . 多边形的边数多边形的边数 3 3 4 4 5 5
2、6 6 n从一个顶点出发引从一个顶点出发引对角线而分成的三对角线而分成的三角形个数角形个数 多边形的内角和多边形的内角和 【问题问题3 3】类比四边形内角和的推导方法,你能求类比四边形内角和的推导方法,你能求五边形、六边形五边形、六边形n边形的内角和各是多少吗?边形的内角和各是多少吗? 1 2 3 4n21800360054007200(n2)1800总结:总结:探索多边形的内角和关键是探索多边形的内角和关键是 把多边形分成几个三角形,再利用三把多边形分成几个三角形,再利用三角形的内角和求得角形的内角和求得.n180o360o(n1)180o180o思考:思考:把一个多边形分成几个三角形,把一
3、个多边形分成几个三角形, 还有其他分法吗?还有其他分法吗? 例例1 1 如果一个四边形的一组对角互补,那如果一个四边形的一组对角互补,那么另一组对角有什么关系?么另一组对角有什么关系?ABCD解:四边形解:四边形ABCDABCD中,中, A A+C C=180=180. .A A+B B+C C+D D=360=360,B B+D D=360=360(A A+C C ) ) =360=360180180=180=180. .结论:如果四边形的一组对角互结论:如果四边形的一组对角互 补,那么另一组对角也互补补,那么另一组对角也互补. .例例2 2 如图,在六边形的每个顶点处各取一如图,在六边形的
4、每个顶点处各取一个外角,这些外角的和叫做六边形的外角个外角,这些外角的和叫做六边形的外角和六边形的外角和等于多少?和六边形的外角和等于多少?123456ABCDEF分析:分析:(1 1)回忆三角形的外角和的求法;)回忆三角形的外角和的求法;(2 2)任何一个外角同与它相邻的)任何一个外角同与它相邻的内角有什么关系?内角有什么关系?(3 3)六边形的)六边形的6 6个外角加上与它们相邻的内角,所个外角加上与它们相邻的内角,所得总和是多少?得总和是多少?(4 4)上述总和与六边形的内角和、外角和有什么关)上述总和与六边形的内角和、外角和有什么关系?系?例例3 3 三角形、六边形的外角和都是三角形、
5、六边形的外角和都是360360,那,那么么n n边形的外角和(边形的外角和(n是不小于是不小于3 3的任意整数)的任意整数)还是还是360360吗?若是,证明你的结论;若不是,吗?若是,证明你的结论;若不是,请说明你的理由请说明你的理由3601802180)2(180nn结论:多边形的外角和等于结论:多边形的外角和等于360360归纳:多边形的外角和的推导方法归纳:多边形的外角和的推导方法 多边形的内角和多边形的内角和+ +外角和外角和=边数边数180180练习:1 1完成教材第完成教材第2424页练习第页练习第1 1、2 2、3 3题题. .2 2一个多边形的内角和是外角和的一个多边形的内角
6、和是外角和的3 3倍,它倍,它是几边形?是几边形?解:设这个多边形的边数为解:设这个多边形的边数为n, 根据题意,得(根据题意,得(n2 2)180=3180=3360.360.解这个方程,得解这个方程,得n= 8 . = 8 . 答:这个多边形是八边形答:这个多边形是八边形. .感悟:方程思想解决几何问题的优越性感悟:方程思想解决几何问题的优越性(1 1)十二边形的内角和是)十二边形的内角和是 ,外角,外角和是和是 (2 2)一个多边形的每个内角都是)一个多边形的每个内角都是160160,这是几边形?这是几边形? 1 8001 800o o360360o o解:设这个多边形的边数为解:设这个
7、多边形的边数为n, 根据题意,得根据题意,得(n2)180=160n.解这个方程,得解这个方程,得 n = 18. = 18. 答:这个多边形是十八边形答:这个多边形是十八边形. .思考:还有其他解法吗?比较两种解法,思考:还有其他解法吗?比较两种解法, 哪个更好?哪个更好?3达标测评达标测评今天的收获今天的收获 1 1、n边形的内角和等于边形的内角和等于(n2 2)180180. . 3 3、利用类比归纳、转化的学习方法,可以、利用类比归纳、转化的学习方法,可以把多边形问题转化为三角形问题来解决把多边形问题转化为三角形问题来解决; ; 外角外角问题转化为内角来解决问题转化为内角来解决. . 4 4、方程的数学思想在几何中有重要的作用、方程的数学思想在几何中有重要的作用. . 【问题问题4 4】本节课你学会了哪些知识?学会了哪些解决本节课你学会了哪些知识?学会了哪些解决问题的方法?你还有哪些疑问?问题的方法?你还有哪些疑问? 2 2、n边形的外角和等于边形的外角和等于 360360. . A A组:组:习题习题11.311.3第第2 2、3 3、4 4、5 5、 6 6题题. .B B 组:组:已知一个多边形除了一个内已知一个多边形除了一个内角外,其余各内角的和是角外,其余各内角的和是2 7502 750,求这个多边形的,求这个多边形的边数边数. . 作作业业
限制150内