工业项目工程英文文献及其外文翻译.doc
《工业项目工程英文文献及其外文翻译.doc》由会员分享,可在线阅读,更多相关《工业项目工程英文文献及其外文翻译.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、/-附录附录1:英文文献Line Balancing in the Real WorldAbstract: Line Balancing (LB) is a classic, well-researched Operations Research (OR) optimization problem of significant industrial importance. It is one of those problems where domain expertise does not help very much: whatever the number of years spent s
2、olving it, one is each time facing an intractable problem with an astronomic number of possible solutions and no real guidance on how to solve it in the best way, unless one postulates that the old way is the best way .Here we explain an apparent paradox: although many algorithms have been proposed
3、in the past, and despite the problems practical importance, just one commercially available LB software currently appears to be available for application in industries such as automotive. We speculate that this may be due to a misalignment between the academic LB problem addressed by OR, and the act
4、ual problem faced by the industry.Keyword: Line Balancing, Assembly lines, OptimizationLine Balancing in the Real WorldEmanuel FalkenauerOptimal DesignAv. Jeanne 19A bote2, B-1050 Brussels, Belgium+32 (0)2 646 10 74E.F1 IntroductionAssembly Line Balancing, or simply Line Balancing (LB), is the probl
5、em of assigning operations to workstations along an assembly line, in such a way that the assignment be optimal in some sense. Ever since Henry Fords introduction of assembly lines, LB has been an optimization problem of significant industrial importance: the efficiency difference between an optimal
6、 and a sub-optimal assignment can yield economies (or waste) reaching millions of dollars per year. LB is a classic Operations Research (OR) optimization problem, having been tackled by OR over several decades. Many algorithms have been proposed for the problem. Yet despite the practical importance
7、of the problem, and the OR efforts that have been made to tackle it, little commercially available software is available to help industry in optimizing their lines. In fact, according to a recent survey by Becker and Scholl (2004), there appear to be currently just two commercially available package
8、s featuring both a state of the art optimization algorithm and a user-friendly interface for data management. Furthermore, one of those packages appears to handle only the “clean” formulation of the problem (Simple Assembly Line Balancing Problem, or SALBP), which leaves only one package available f
9、or industries such as automotive. This situation appears to be paradoxical, or at least unexpected: given the huge economies LB can generate, one would expect several software packages vying to grab a part of those economies. It appears that the gap between the available OR results and their dissemi
10、nation in Todays industry, is probably due to a misalignment between the academic LB problem addressed by most of the OR approaches, and the actual problem being faced by the industry. LB is a difficult optimization problem even its simplest forms are NP-hard see Garry and Johnson, 1979), so the app
11、roach taken by OR has typically been to simplify it, in order to bring it to a level of complexity amenable to OR tools. While this is a perfectly valid approach in general, in the particular case of LB it led some definitions of the problem hat ignore many aspects of the real-world problem. Unfortu
12、nately, many of the aspects that have been left out in the OR approach are in fact crucial to industries such as automotive, in the sense that any solution ignoring (violating) those aspects becomes unusable in the industry.In the sequel, we first briefly recall classic OR definitions of LB, and the
13、n review how the actual line balancing problem faced by the industry differs from them, and why a solution to the classic OR problem maybe unusable in some industries.2 OR Definitions of LBThe classic OR definition of the line balancing problem, dubbed SALBP (Simple Assembly Line Balancing Problem)
14、by Becker and Scholl (2004), goes as follows. Given a set of tasks of various durations, a set of precedence constraints among the tasks, and a set of workstations, assign each task to exactly one workstation in such a way that no precedence constraint is violated and the assignment is optimal. The
15、optimality criterion gives rise to two variants of the problem: either a cycle time is given that cannot be exceeded by the sum of durations of all tasks assigned to any workstation and the number of workstations is to be minimized, or the number of workstations is fixed and the line cycle time, equ
16、al to the largest sum of durations of task assigned to a workstation, is to be minimized.Although the SALBP only takes into account two constraints (the precedence constraints plus the cycle time, or the precedence constraints plus the number of workstations), it is by far the variant of line balanc
17、ing that has been the most researched. We have contributed to that effort in Falkenauer and Delchambre (1992), where we proposed a Grouping Genetic Algorithm approach that achieved some of the best performance in the field. The Grouping Genetic Algorithm technique itself was presented in detail in F
18、alkenauer (1998).However well researched, the SALBP is hardly applicable in industry, as we will see shortly. The fact has not escaped the attention of the OR researches, and Becker and Scholl (2004) define many extensions to SALBP, yielding a common denomination GALBP (Generalized Assembly Line Bal
19、ancing Problem). Each of the extensions reported in their authoritative survey aims to handle an additional difficulty present in real-world line balancing. We have tackled one of those aspects in Falkenauer (1997), also by applying the Grouping Genetic Algorithm.The major problem with most of the a
20、pproaches reported by Becker and Scholl (2004) is that they generalize the simple SALBP in just one or two directions. The real world line balancing, as faced in particular by the automotive industry, requires tackling many of those generalizations simultaneously.3 What Differs in the Real World?Alt
21、hough even the simple SALBP is NP-hard, it is far from capturing the true complexity of the problem in its real-world incarnations. On the other hand, small instances of the problem, even though they are difficult to solve to optimality, are a tricky target for line balancing software, because small
22、 instances of the problem can be solved closet optimality by hand. That is however not the case in the automotive and related industries (Bus, truck, aircraft, heavy machinery, etc.), since those industries routinely feature Assembly lines with dozens or hundreds of workstations, and hundreds or tho
23、usands of Operations. Those industries are therefore the prime targets for line balancing software.Unfortunately, those same industries also need to take into account many of the GALBP extensions at the same time, which may explain why, despite the impressive OR Work done on line balancing; only one
24、 commercially available software seems tube currently available for those industries.We identify below some of the additional difficulties (with respect to SALBP) that must be tackled in a line balancing tool, in order to be applicable in those industries.3.1 Do Not Balance but Re-balance Many of th
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工业 项目 工程 英文 文献 及其 外文 翻译
限制150内