2022年新人教版初一下册数学实际问题与二元一次方程组经典例题 .pdf
《2022年新人教版初一下册数学实际问题与二元一次方程组经典例题 .pdf》由会员分享,可在线阅读,更多相关《2022年新人教版初一下册数学实际问题与二元一次方程组经典例题 .pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、优秀资料欢迎下载!新人教版初一下册数学实际问题与二元一次方程组经典例题 2014年 5 月 1 日经典例题透析类型一:列二元一次方程组解决 行程问题1甲、乙两地相距160 千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1 小时 20分相遇 . 相遇后, 拖拉机继续前进,汽车在相遇处停留1 小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?总结升华: 根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。【变式 1】甲、乙两人相距36 千米,相向而行,如果甲比乙先走2 小时,那么他们在乙出发2.5 小时后
2、相遇;如果乙比甲先走2 小时,那么他们在甲出发3 小时后相遇,甲、乙两人每小时各走多少千米?【变式 2】两地相距280 千米,一艘船在其间航行,顺流用14 小时,逆流用20 小时,求船在静水中的速度和水流速度。分析:船顺流速度静水中的速度水速船逆流速度静水中的速度水速类型二:列二元一次方程组解决 工程问题2一家商店要进行装修,若请甲、 乙两个装修组同时施工,8 天可以完成, 需付两组费用共3520元;若先请甲组单独做6 天,再请乙组单独做12 天可完成,需付两组费用共3480 元,问: (1) 甲、乙两组工作一天,商店应各付多少元?(2) 已知甲组单独做需12 天完成,乙组单独做需24 天完成
3、,单独请哪组,商店所付费用最少?思路点拨: 本题有两层含义,各自隐含两个等式,第一层含义:若请甲、乙两个装修组同时施工,8 天可以完成,需付两组费用共3520 元;第二层含义:若先请甲组单独做6 天,再请乙组单独做12 天可完成,需付两组费用共3480 元。设甲组单独做一天商店应付x 元,乙组单独做一天商店应付y 元,由第一层含义可得方程8(x+y)=3520, 由第二层含义可得方程6x+12y=3480.精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 8 页优秀资料欢迎下载!举一反三:【变式】 小明家准备装修一套新住房,若甲、乙两个装
4、饰公司合作6 周完成需工钱5.2 万元;若甲公司单独做 4 周后,剩下的由乙公司来做,还需9 周完成,需工钱4.8 万元 . 若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由. 类型三:列二元一次方程组解决 商品销售利润问题3有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46 元。价格调整后,甲商品的利润率为4% ,乙商品的利润率为5% ,共可获利44 元,则两件商品的进价分别是多少元?思路点拨 :做此题的关键要知道:利润进价利润率举一反三:【变式 1】( 2011 湖南衡阳)李大叔去年承包了10 亩地种植甲、乙两种蔬菜,共获利18
5、000 元,其中甲种蔬菜每亩获利2000 元,乙种蔬菜每亩获利1500 元,李大叔去年甲、乙两种蔬菜各种植了多少亩?【变式 2】某商场用36 万元购进A、B两种商品,销售完后共获利6 万元,其进价和售价如下表:A B 进价(元 /件)1200 1000 售价(元 /件)1380 1200 (注:获利 = 售价 进价)求该商场购进A、B两种商品各多少件;类型四:列二元一次方程组解决 银行储蓄问题4小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000 元钱,一种是年利率为2.25 的教育储蓄,另一种是年利率为2.25 的一年定期存款,一年后可取出2042.75元,问这两种储
6、蓄各存了多少钱?(利息所得税利息金额20% ,教育储蓄没有利息所得税)总结升华 : 我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 8 页优秀资料欢迎下载!举一反三:【变式 1】 李明以两种形式分别储蓄了2000 元和 1000 元, 一年后全部取出, 扣除利息所得税可得利息43.92元. 已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公
7、民应缴利息所得税=利息金额 20% )思路点拨: 扣税的情况:本金年利率(1-20%) 年数 =利息(其中,利息所得税=利息金额20% ) . 不扣税时:利息=本金年利率年数. 类型五:列二元一次方程组解决 生产中的配套问题5 某服装厂生产一批某种款式的秋装,已知每 2米的某种布料可做上衣的衣身3 个或衣袖 5 只. 现计划用132 米这种布料生产这批秋装( 不考虑布料的损耗) , 应分别用多少布料才能使做的衣身和衣袖恰好配套?思路点拨: 本题的第一个相等关系比较容易得出:衣身、衣袖所用布料的和为132 米;第二个相等关系的得出要弄清一整件衣服是怎么样配套的,即衣袖的数量等于衣身的数量的2 倍
8、( 注意:别把2 倍的关系写反了 ).总结升华: 生产中的配套问题很多,如螺钉和螺母的配套、盒身与盒底的配套、桌面与桌腿的配套、衣身与衣袖的配套等. 各种配套都有数量比例,依次设未知数,用未知数可把它们之间的数量关系表示出来,从而得到方程组,使问题得以解决,确定等量关系是解题的关键. 举一反三:【变式 1】现有 190 张铁皮做盒子,每张铁皮做8 个盒身或22 个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?思路点拨: 两个未知数是制盒身、盒底的铁皮张数,两个相等关系是:制盒身铁皮张数+制盒底铁皮张数=190;制盒身个数的2倍 =
9、制盒底个数 . 【变式 2】某工厂有工人60 人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14 个或螺母 20 个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 8 页优秀资料欢迎下载!类型六:列二元一次方程组解决 增长率问题6. 某工厂去年的利润(总产值总支出)为200 万元,今年总产值比去年增加了20% ,总支出比去年减少了10% ,今年的利润为780 万元,去年的总产值、总支出各是多少万元?思路点拨 :设去年的总产值为x 万元,总支出为y 万
10、元,则有总产值(万元)总支出(万元)利润(万元)去年x y 200 今年120%x 90%y 780 根据题意知道去年的利润和今年的利润,由利润=总产值总支出和表格里的已知量和未知量,可以列出两个等式。举一反三:【变式 1】若条件不变,求今年的总产值、总支出各是多少万元?【变式 2】某城市现有人口42 万,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加 1% ,求这个城市的城镇人口与农村人口。思路点拨: 由题意得两个等式关系,两个相等关系为:(1)城镇人口 +农村人口 =42 万;(2)城镇人口 (1+0.8%)+ 农村人口(1+1.1%)=42( 1+1% )类型七:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年新人教版初一下册数学实际问题与二元一次方程组经典例题 2022 新人 初一 下册 数学 实际问题 二元 一次 方程组 经典 例题
限制150内