2022年高二数学上学期必记的重要知识点分析.docx
《2022年高二数学上学期必记的重要知识点分析.docx》由会员分享,可在线阅读,更多相关《2022年高二数学上学期必记的重要知识点分析.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年高二数学上学期必记的重要知识点分析 复习数学时,要制定好安排,不但要有本学期大的规划,还要有每月、每周、每天的小安排,安排要与老师的复习安排吻合,不能相互冲突,下面是我给大家带来的高二数学上学期必记的重要学问点分析,希望大家能够喜爱! 高二数学上学期必记的重要学问点分析1 1.不等式证明的依据 (2)不等式的性质(略) (3)重要不等式:|a|0;a20;(a-b)20(a、bR) a2+b22ab(a、bR,当且仅当a=b时取“=”号) 2.不等式的证明方法 (1)比较法:要证明ab(a0(a-b0),这种证明不等式的方法叫做比较法. 用比较法证明不等式的步骤是:作差变形推断符号.
2、 (2)综合法:从已知条件动身,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法. (3)分析法:从欲证的不等式动身,逐步分析使这不等式成立的充分条件,直到所需条件已推断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法. 证明不等式除以上三种基本方法外,还有反证法、数学归纳法等. 高二数学上学期必记的重要学问点分析2 导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量x时,函数输出值的增量y与自变量增量x的比值在x趋于0时的极限a假如存在,a即为在x0处的导数,记作f'(x0)或df(x0)/d
3、x。 导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点旁边的改变率。假如函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性靠近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是全部的函数都有导数,一个函数也不肯定在全部的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不行导。然而,可导的函数肯定连续;不连续的函数肯定不行导。 对于可导的函数f(x),x?f'(x)也是一个函数,称作f(x)的导函数。找寻已知的函数在某点的导数或其导函数的过程称
4、为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明白求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。 高二数学上学期必记的重要学问点分析3 1.在中学我们只研直圆柱、直圆锥和直圆台。所以对圆柱、圆锥、圆台的旋转定义、事实上是直圆柱、直圆锥、直圆台的定义。 这样定义直观形象,便于理解,而且对它们的性质也易推导。 对于球的定义中,要留意区分球和球面的概念,球是实心的。 等边圆柱和等边圆锥是特别圆柱和圆锥,它是由其轴截面来定义的,在实践中运用较广,要留意
5、与一般圆柱、圆锥的区分。 2.圆柱、圆锥、圆和球的性质 (1)圆柱的性质,要强调两点:一是连心线垂直圆柱的底面;二是三个截面的性质平行于底面的截面是与底面全等的圆;轴截面是一个以上、下底面圆的直径和母线所组成的矩形;平行于轴线的截面是一个以上、下底的圆的弦和母线组成的矩形。 (2)圆锥的性质,要强调三点 平行于底面的截面圆的性质: 截面圆面积和底面圆面积的比等于从顶点到截面和从顶点究竟面距离的平方比。 过圆锥的顶点,且与其底面相交的截面是一个由两条母线和底面圆的弦组成的等腰三角形,其面积为: 易知,截面三角形的顶角不大于轴截面的顶角(如图10-20),事实上,由BCAB,VC=VB=VA可得A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年高 数学 上学 期必记 重要 知识点 分析
限制150内