2022年高一数学必修一的知识点总结介绍.docx
《2022年高一数学必修一的知识点总结介绍.docx》由会员分享,可在线阅读,更多相关《2022年高一数学必修一的知识点总结介绍.docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年高一数学必修一的知识点总结介绍 中学的数学是比较的难的,学生在学习的时候要做好心理打算,下面学习啦的我将为大家带来高一数学必修一的学问点的总结介绍,希望能够帮助到大家。 高一数学必修一的学问点总结 一:集合的含义与表示 1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能推断一个给定的东西是否属于这个整体。 把探讨对象统称为元素,把一些元素组成的总体叫集合,简称为集。 2、集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。 (2)元素的互异性:一个给定集合中的元素是唯一的,不行重复的。 (3)元素的无序
2、性:集合中元素的位置是可以变更的,并且变更位置不影响集合 3、集合的表示: (1)用大写字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 (2)集合的表示方法:列举法与描述法。 a、列举法:将集合中的元素一一列举出来a,b,c b、描述法: 区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 x?R|x-32,x|x-32 语言描述法:例:不是直角三角形的三角形 Venn图:画出一条封闭的曲线,曲线里面表示集合。 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合 5、元素与集合的关系: (1)元素在集合
3、里,则元素属于集合,即:a?A (2)元素不在集合里,则元素不属于集合,即:aA 留意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 6、集合间的基本关系 (1).包含关系(1)子集 定义:假如集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。 7、集合的运算 二、函数的概念 函数的概念:设A、B是非空的数集,假如根据某个确定的对应关系f,使对于集合A中的随意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A-B为从集合A到集合B的一个函数.记作:y=f(x),x∈A
4、. (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域; (2)与x的值相对应的y值叫做函数值,函数值的集合f(x)|x∈A叫做函数的值域. 函数的三要素:定义域、值域、对应法则 函数的表示方法:(1)解析法:明确函数的定义域 (2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。 (3)列表法:选取的自变量要有代表性,可以反应定义域的特征。 4、函数图象学问归纳 (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.
5、C上每一点的坐标(x,y)均满意函数关系y=f(x),反过来,以满意y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上. (2)画法 A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。 (3)函数图像平移变换的特点: 1)加左减右只对x 2)上减下加只对y 3)函数y=f(x)关于X轴对称得函数y=-f(x) 4)函数y=f(x)关于Y轴对称得函数y=f(-x) 5)函数y=f(x)关于原点对称得函数y=-f(-x) 6)函数y=f(x)将x轴下面图像翻到x轴上面去,x轴上面图像不动得 函数y=|f(x)| 7)函数y=f(x)先作x≥0的图像,然后作关于
6、y轴对称的图像得函数f(|x|) 三、函数的基本性质 1、函数解析式子的求法 (1、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2、求函数的解析式的主要方法有: 1)代入法: 2)待定系数法: 3)换元法: 4)拼凑法: 2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必需大于零; (4)指数、对数式的底必需大于零且不等于1. (5)假如函数是由一些基本函数通过四则运算结合而成的.
7、那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不行以等于零, (7)实际问题中的函数的定义域还要保证明际问题有意义. 3、相同函数的推断方法:表达式相同(与表示自变量和函数值的字母无关);定义域一样(两点必需同时具备) 4、区间的概念: (1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示 5、值域(先考虑其定义域) (1)视察法:干脆视察函数的图像或函数的解析式来求函数的值域; (2)反表示法:针对分式的类型,把Y关于X的函数关系式化成X关于Y的函数关系式,由X的范围类似求Y的范围。 (3)配方法:针对二次函数的类型,依据二次函数图像
8、的性质来确定函数的值域,留意定义域的范围。 (4)代换法(换元法):作变量代换,针对根式的题型,转化成二次函数的类型。 6.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。 (2)各部分的自变量的取值状况. (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. (4)常用的分段函数有取整函数、符号函数、含肯定值的函数 7.映射 一般地,设A、B是两个非空的集合,假如按某一个确定的对应法则f,使对于集合A中的随意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A-B为从集合A到集合B的一个映射。记作f(对应关系):A(原象)-B(象) 对于映射f:A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年高 数学 必修 知识点 总结 介绍
限制150内