2022年浙江省“七彩阳光”联盟2018届高三上学期期初联考数学试题word版含答案 .pdf
《2022年浙江省“七彩阳光”联盟2018届高三上学期期初联考数学试题word版含答案 .pdf》由会员分享,可在线阅读,更多相关《2022年浙江省“七彩阳光”联盟2018届高三上学期期初联考数学试题word版含答案 .pdf(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、- 1 - 2017 学年第一学期浙江“七彩阳光”联盟期初联考高三年级数学学科试题本试题卷分选择题和非选择题两部分,全卷共4 页,选择题部分1 至 2 页,非选择题部分 3 至 4 页,总分值150 分,考试时间120 分钟。考生注意:1 答题前,请务必将自己的、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。2 答题时,请按照答题纸上“注意事项”的要求,在答题纸相应位置上标准作答,在本试题卷上的作答一律无效。参考公式:球的外表积公式锥体的体积公式24SR13VSh球的体积公式其中S表示锥体的底面积,h表示锥体的高343VR台体的体积公式其中R表示球的半径1()3aabbV
2、h SSSS柱体的体积公式其中abSS、分别表示台体的上、下底面积,VShh表示台体的高其中S表示柱体的底面面积,h表示柱体的高选择题部分共 40 分一、选择题:本大题共10 小题,每题4 分,共40 分在每题给出的四个选项中,只有一项是符合题目要求的1. 已知集合2|230Ax xx,2|31,RBy yxx,则ABA.| 31xxB.|12xxC.|11xxD.|13xx2. 已知i是虚数单位,假设复数z满足411iz,则z zA.4 B.5 3. 某四棱锥的三视图如下图,则该四棱锥的外表积为A.842B.622 3C.642D.62 22 3精选学习资料 - - - - - - - -
3、- 名师归纳总结 - - - - - - -第 1 页,共 11 页- 2 - 4. 假设,Ra b,使| 4ab成立的一个充分不必要条件是A.|4abB.| 4aC.| 2a且|2bD.4b5. 假设220(,0)mnm n,则lg(lglg 2)mn的最大值是A.1 B.2C.36. 函数223( )2xxxfxe的大致图象是A. B. C. D. 7. 已知变量, x y满足约束条件2204xyxyx, 假设不等式220 xym恒成立,则实数m的取值范围是A.6,6B.(,66,)C.7,7D.(,77,)8. 已知, ,a b c分别为ABC的内角,A B C的对边,其面积满足214A
4、BCSa,则cb的最大值为A.21B.2C.21D.229. 假设N*n时,不等式(6)ln()0nnxx恒成立,则实数x的取值范围是A.1,6B.2,3C.1,3D.2,610. 已知直角三角形ABC的两条直角边2,3ACBC,P为斜边AB上一点,沿CP将此三角形折成直二面角ACPB,此时二面角PACB的正切值为2,则翻折后AB的长为A.2 B.5C.6D.7精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 11 页- 3 - 非选择题部分共110分二、填空题:本大题共7 小题,多空题每题6 分,单空题每题4 分,共 36 分11. 6
5、21(1)(1) xx展开式中3x的系数为. 12. 某人喜欢玩有三个关卡的通关游戏,根据他的游玩经验,每次开启一个新游戏,这三个关卡他能够通过的概率分别为1 1 1,2 3 4这个游戏的游戏规则是:如果玩者没有通过上一个关卡,他照样可以玩下一个关卡,但玩该游戏的得分会有影响,则此人在开启一个这种新的游戏时,他能够通过两个关卡的概率为. 设X表示他能够通过此游戏的关卡的个数,则随机变量X的数学期望为. 13. 已知等差数列na的前n项和是nS,假设14,9kkSS,则ka,1a的最大值为. 14. 已知椭圆的方程为22194xy,过椭圆中心的直线交椭圆于,A B两点,2F是椭圆的右焦点,则2A
6、BF的周长的最小值为,2ABF的面积的最大值为. 15. 已知函数( )sin()(0,|)2f xx的图象经过点3(0,)2,假设( )()6fxf对Rx恒成立, 则的值为,当最小时, 函数2( )()32g xf x在区间0,22的零点个数为. 16. 假设向量,a b满足22112aa bb,则|ab的最大值为. 17. 设关于x的方程220 xax和210 xxa的实根分别为12,x x和34,xx,假设1324xxxx,则a的取值范围是. 三、解答题:本大题共5 个小题,共74 分,解答应写出文字说明,证明过程或演算步骤18.此题总分值14 分已知2( )2 3 cossin 231
7、(R)f xxxx.求: 1( )f x的单调增区间; 2当,44x时,求( )f x的值域 . 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 11 页- 4 - 19. 此题总分值15 分如图,ABCD为正方形,PDCE为直角梯形,90PDC,平面ABCD平面PDCE,且22PDADEC. 1假设PE和DC延长交于点F,求证:/ /BF平面PAC. 2假设Q为EC边上的动点,求直线BQ与平面PDB所成角正弦值的最小值.20. 此题总分值15 分已知函数ln( )xaxf xx在1x处的切线的斜率为1. 1如果常数0k,求函数( )f
8、 x在区间(0,k上的最大值; 2对于0m,如果方程2( )0mfxx在(0,)上有且只有一个解,求m的值 . 21. 此题总分值15 分已知F是抛物线2:4Cxy的焦点,点P是不在抛物线上的一个动点,过点P向抛物线C作两条切线12,l l,切点分别为1122(,),(,)A xyB xy. 1如果点P在直线1y上,求11|AFBF的值; 2假设点P在以F为圆心,半径为4 的圆上,求| |AFBF的值 . 22. 此题总分值15 分在数列na中,1112,2(1)nnaaan. 1求数列na的通项公式; 2设2nnnba,数列nb的前n项和为nS,试求数列2nnSS的最小值; 3求证:当2n时
9、,271112nnS. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 11 页- 5 - 2017 学年第一学期浙江“七彩阳光”联盟期初联考高三年级数学学科参考答案选择题部分共40 分一、选择题:本大题共10 小题,每题4 分,共 40 分在每题给出的四个选项中,只有一项是符合题目要求的1C 提示:223013Ax xxxx,231,1By yxxRy y,则AB11xx,故选 C2B 提示:由411iz,得41121zii,则25z zz,故选 B3A 提示:把该三视图复原成直观图后的几何体是如图的四棱锥,红色线四棱锥 A-BCDE
10、为三视图复原后的几何体,其外表积为84 2. 4D 提示:由4b可得4ab,但由4ab得不到4b,如1,5ab5A 提示:22lg2lglg 2lglglg 2lglg224mnmnmnmn,又由2202 2mnmn,所以50mn,从而lglglg 21mn,当且仅当10m,5n时取最大值6B 提示:由fx 的解析式知有两个零点32x与0 x,排除 A ,又2232xxxfxe,由0fx知函数有两个极值点,排除C,D ,故选 B7D 提示:作出约束条件2204xyxyx所对应的可行域如图中阴影部分,令2zxy,当直线经过点4,1A时, z 取得最大值,即max2417z,所以(,77,),故选
11、 DDECBA精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 11 页- 6 - 8C 提 示 : 根 据 题 意 , 有211sin42ABCSabcA, 应 用 余 弦 定 理 , 可 得222cos2sinbcbcAbcA, 于 是212 cos2 sinttAtA, 其 中ctb 于 是22 sin2 cos1tAtAt,所以12 2sin()4Att,从而12 2tt,解得t 的最大值为219. B 提示:原式有意义所以0 x, 设( )6, ( )ln()nf nxng nx,则( ),( )f ng n*nN时,( ),(
12、 )f ng n同号,只需两函数图像和横坐标轴n 为自变量交点间的距离不超过1,即6| 1xx,解得2,3x,检验2,3x两个端点符合题意,所以2,3x. 10. D 提示:如图,在平面PCB内过P作直二面角ACPB的棱CP的垂线交边BC于E,则EPACP于是在平面PAC中过P作二面角PACB的棱AC的垂线, 垂足为D,连接DE, 则PDE为 二面角PACB的 平 面角,且tan2EPPDEPD, 设DPa,则2EPa如 图 , 设BCP, 则90ACP, 则 在 直 角 三 角 形DPC中 ,cossin 90aaPC, 又 在 直 角 三 角 形PCE中 ,tanPEPC则tan2cosa
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年浙江省“七彩阳光”联盟2018届高三上学期期初联考数学试题word版含答案 2022 浙江省 七彩 阳光 联盟 2018 届高三 上学 期期 联考 数学试题 word 答案
限制150内