《2022年中考数学第一轮复习专题训练之《圆》 .pdf》由会员分享,可在线阅读,更多相关《2022年中考数学第一轮复习专题训练之《圆》 .pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载第八章圆与中考中考要求及命题趋势1、理解圆的基本概念与性质。2、求线段与角和弧的度数。3、圆与相似三角形、全等三角形、三角函数的综合题。4、直线和圆的位置关系。5、圆的切线的性质和判定。6、三角形内切圆以及三角形内心的概念。7、圆和圆的五种位置关系。8、两圆的位置关系与两个圆半径的和或差与圆心距之间的关系式。两圆相切、相交的性质。9、掌握弧长、扇形面积计算公式。10、理解圆柱、圆锥的侧面展开图。11、掌握圆柱、圆锥的侧面积和全面积计算。20XX 年中考将继续考查圆的有关性质,其中圆与三角形相似(全等)。三角函数的小综合题为考查重点;直线和圆的关系作为考查重点,其中直线和圆的位置
2、关系的开放题、探究题是考查重点;继续考查圆与圆的位置五种关系。对弧长、扇形面积计算以及圆柱、圆锥的侧面积和全面积的计算是考查的重点。应试对策圆的综合题,除了考切线、弦切角必须的问题。一般圆主要和前面的相似三角形,和前面大的知识点接触。就是说几何所有的东西都是通的,你学后面的就自然牵扯到前面的,前面的忘掉了,简单的东西忘掉了,后面要用就不会用了,所以几何前面学到的知识、 常用知识, 后面随时都在用。直线和圆以前的部分是重点内容,后面扇形的面积、圆锥、圆柱的侧面积,这些都是必考的,后面都是一些填空题和选择题,对于扇形面积公式、圆锥、圆柱的侧面积的公式记住了就可以了。圆这一章,特别是有关圆的性质这两
3、个单元, 重要的概念、 定理先掌握了, 你首先要掌握这些,题目就是定理的简单应用,所以概念和定理没有掌握就谈不到应用,所以你首先应该掌握。掌握之后,再掌握一些这两章的解题思路和解题方法就可以了。你说你已经把一些这个单元的基本定理都掌握了,那么我可以在这里面介绍一些掌握的解题思路,这样你把这些都掌握了,解决一些中等难题。都是哪些思路呢?我暂认为你基本知识掌握了,那么,在圆的有关性质这一章,你需要掌握哪些解题思路、解题方法呢?第一,这两章有三条常用辅助线,一章是圆心距,第二章是直径圆周角,第三条是切线径,就是连接圆心和切点的,或者是连接圆周角的距离,这是一条常用的辅助线。有几个分析题目的思路,在圆
4、中有一个非常重要,就是弧、常与圆周角互相转换,那么怎么去应用,就根据题目条件而定。例题精讲例1、 如图, A、B、C、D是O上的三点, BAC=30 ,则BOC 的大小是 ( ) A、60 B、45 C、30 D、15例 2、如图, .一方格纸上一圆经过 (2,5) 、(-2 ,2) 、(2,-3 ,)、(6,2) 四点,则该圆圆心的坐标为 ( ) A(2,-1) B(2,2) C(2,1) D(3,1) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 4 页学习必备欢迎下载例 3.已知O 的半径为 10 cm,如果一条直线和圆心O的距
5、离为 10 cm, 那么这条直线和这个圆的位置关系为( ) A相离 B.相切 C相交 D相交或相离例 4.已知:如图,在O的内接四边形 ABCD 中,AB是直径, BCD=130 ,过 D点的切线 PD与直线 AB交于 P点, 则ADP的度数为 ( ) A 40 B45 C50 D 65例 5. 以 O为圆心的两个同心圆的半径分别为11cm和 9 cm,若P 与这两个圆都相切,则下列说法中正确的有A.P 的半径可以为 1cm B.P 的半径可以为 10 cm C. 符合条件的P有无数个且 P点运动的路线是曲线D.符合条件的P 有无数个且 P点运动的路线是直线例 6、如图,O的半径为 5cm ,
6、圆心到弦 AB的距离为 3cm ,则弦 AB的长为 _cm ;例 7、 边长为 6的正六边形外接圆半径是 _ ;例 8. 如图,三个同心扇形的圆心角 AOB 为 120,半径 OA为 6 cm ,C、D是AB的三等分点,则阴影部分的面积等于 cm2例 9.(1) 如图,OA 、OB是O 的两条半径,且 OA OB ,点 C是 OB延长线上任意一点:过点 C作 CD切O 于点 D,连结 AD交 DC于点 E求证: CD=CE (2) 若将图 8 中的半径 OB所在直线向上平行移动交OA于 F,交O 于 B,其他条件不变 ( 如图 9),那么上述结论 CD=CE 还成立吗 ?为什么 ? (3) 若
7、将图 8 中的半径 OB所在直线向上平行移动到O外的 CF , 点 E是 DA的延长线与 CF的交点,其他条件不变 (如图 10),那么上述结论CD=CE 还成立吗?为什么分析:本题主要考查圆的有关知识,考查图形运动变化中的探究能力及推理能力精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 4 页学习必备欢迎下载B O C A P 专题训练(八)圆一、填空题:、已知 O 的半径为5cm,OA 4cm,则点 A 在。、如果圆中一条弦长与半径相等,那么此弦所对圆心角为度。、已知 AOB 30, M 的半径为2cm,当 OM 时,M 与 OA
8、相切。、如图, AB 是 O 的直径, A50,则 B。、已知, O1与 O2外切,且O1O210cm,若 O1的半径为3cm,则 O2的半径为cm。、如图,半径为30cm 的转轮转 120角时,传送带上的物体 A 平移的距离为cm。 (保留 )、在 ABC 中, BAC 80, I 是 ABC 外接圆的圆心,则 BIC。、如图, A、B、C 是 O 上三个点,当BC 平分 ABO 时,能得出结论:。(任写一个)、 ABC 的周长为10cm,面积为4cm2,则 ABC 内切圆半径为cm。10、PA 切 O 于 A 点, PC 经过圆心 O,且 PA8,PB4。则 O 的半径为。11、半径是 6
9、,圆心角为 120的扇形是某圆锥的侧面展开图,这个圆锥的底面半径为。12、在 RtABC 中, C90, CA CB2,分别以 A、B、C 为圆心,以12AC 为半径画弧, 三条弧与边AB 所围成的阴影部分的面积是。二、选择题:、在 O 中,若AB2CD,则弦 AB 和 CD 的关系是()A、AB 2CDB、AB 2CDC、AB 2CDD、无法确定、如图,等边三角形ABC 内接于圆, D 为BC上一点,则图中等于60的角有()A、3 个B、4 个C、5 个D、6 个、下列作图语言规范的是()A、过点 P作线段 AB 的中垂线B、在线段 AB 的延长线上取一点C,使 AB AC C、过直线a、直
10、线b 外一点P 作直线 MN ,使 MN ab D、过点P 作直线AB 的垂线、已知 ABC 中, AB ACBC。求作:一个圆的圆心O,使得O在 BC 上,且圆 O 与 AB、 AC 皆相切,下列作法正确的是()A、作 BC 的中点 O B、作 A 的平分线交BC 于 O 点C、作 AC 的中垂线,交BC 于 O 点D、过 A 作 AD BC,交 BC 于 O 点A B M O A C B O C B A A A C B O A C D B O 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 4 页学习必备欢迎下载、已知两圆的半径分别
11、是5 和 7,圆心距为2,那么两圆的位置关系是()A、外离B、外切C、相交D、内切、已知 , AB 是 O 的直径,弦AD 和 BC 相交于 P, 那么CDAB等于()A、sinBPDB、cosBPDC、tamBPD D、cot BPD 三、解答题:、一个圆形零件的部分碎片如图所示,试确定圆心并画出整个圆。、在 O 中, AB 是 O 的直径, AOC 120,求 D 的度数。3、已知 O 中, AD BC,求证: AB CD。4、已 知三角形三边长分别是4cm、5cm、6cm,以各顶点为圆心的三个圆的两两外切,求这三个圆的半径。四、如图,点C 在以 AB 为直径的半圆上,且AB10,tanBAC 34,求阴影部分的面积(精确到0.01) 。五、一扇形纸扇完全打开后,线段AD 、BC 所在直线相交于点O,AB与CD是以点 O 为圆心, 半径分别为10cm,20cm 的圆弧, 且 AOB 150,求这把纸扇贴纸部分ADCB的面积,(用含 的式子表示)A B A B O P C D A O C B D A O C D B A B C A B O D C 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 4 页
限制150内