2022年中小学数学中常见的数学思想方法简介 .pdf
《2022年中小学数学中常见的数学思想方法简介 .pdf》由会员分享,可在线阅读,更多相关《2022年中小学数学中常见的数学思想方法简介 .pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、读书之法 ,在循序而渐进 ,熟读而精思中小学数学中常见的数学思想方法简介字丽花201015010150 所谓数学方法是指解决数学具体问题时所采用的方式、途径、 程序和手段。 数学方法具有过程性、 层次性和可操作性等特点。数学思想是数学的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,两者往往结合在一起,习惯上把它们称为数学思想方法。其中,小学数学思想方法是指对小学数学知识有本质的认识,从方法论的角度来研究掌握小学数学中分析问题、思考问题的方法。它是以具体数学内容为载体,又高于具体数学内容的一种指导思想和普遍的适用的方法。在小学数学教育教学中有意识地向学生渗透一些基本的数学思想方法能使
2、学生领悟数学的真谛,懂得数学的价值, 学会数学地思考和解决问题,能把知识的学习与培养能力。发展智力、发展智力有机地统一起来,且它本身也蕴涵了情感素养的熏染,这也正是新课程标准充分强调的。小学数学教学主要渗透的数学思想有如下几种:1.集合思想。包括并集思想、交集思想、差集思想、空集思想 ( 加 法 )( 公约数) (减法) (0 的认识)。2.对应思想。对应思想是指人的思想对两个集合元素之间联系的把握。许多具体的数学思想来源于对应思想。对应思想主要体现在:数形结合思想、 函数思想、 变换思想。(1)数形结合的思想。在小学数学中的主要体现在:.利用图形的“一一配对”来理解数学概念。.利用“数”与“
3、形”的对应,让学生理解数与式的概念。.用“数轴”渗透数集与直线上的点集对应的思想。(自然数集与数轴上的对应的点组成的集合).通过数形对应,分析应用题。(如:用线段图分析数量关系)小学各年级课件教案习题汇总一年级二年级三年级四年级五年级(2)函数思想。.函数概念的渗透。小学数学教材从低年段开始,如一个加数不变时,“和”随“另一个加数”变化,也是找出其对应关系。正反比例这部分内容更是集中渗透了函数概念。教师处理这部分教材时,应通过画图、 列表等直观形式,引导学生通过观察、归纳发现出两个量的“变化”,突出“两种相关的量”之间的对应关系。.函数表示法的渗透。小学数学中几何图形的周长,面积和体积公式,实
4、际上就是用解析法来表示变量之间关系的函数关系式。如:圆面积公式2 ,圆面积随着半径的变化而变化。(3)变换思想。变换思想在学数学教学中通过运算中的恒等变换,几何图形的平移、旋转、对称等变换渗透了变换思想。3. 符号化思想。用符号化的语言(字母数字、图形和各种特定的符号)来描述数学的内容, 这就是符号思想。符号思想是将所有的数据实例集为一体,把复杂的语言文字叙述用简洁明了的字母公式表示出来,便于记忆, 便于运用。 把客观存在的事物和现象及它们相互之间的关系抽象概括为数学符号和公式,有一个从具体到表象再抽象符号化的过程。用符号来体现的数学语言是世界性语言,是一个人数学素养的综合反映。在数学中各种量
5、的关系, 量的变化以及呈与量之间进行推导和演算,进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式来表达大量的信息。4化归思想 . 化归思想是数学中最普遍使用的一种思想方法,其基本思想是:把甲问题的求解, 化归为乙问题的求解,然后通过乙问题的解反向去获得甲问题的解。一般是指不可逆向的“变换” 。它的基本形式有:化难为易,化生为熟,化繁为简,化整为零,化曲为直等。如求组合图形的面积时先把组合图形割补成学过的简单图形,然后计算出各部分面积的和或差,均能使学生体会化归法的本质。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 6 页读书之
6、法 ,在循序而渐进 ,熟读而精思5. 类比思想类比思想数学上的类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想,它能够解决一些表面上看似复杂困难的问题。 类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟得自然和简洁,从而可以激发起学生的创造力,正如数学家波利亚所说:“我们应该讨论一般化和特殊化和类比的这些过程本身,它们是获得发现的伟大源泉。”6. 分类思想分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2 整除分奇数和偶数;按因数的个数分素数和合数。又如三角形可以按边
7、分,也可以按角分。 不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理的分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构7. 统计思想统计思想主要体现在把握数据的能力,养成会用数据“说事”,收集数据,整理数据,分析数据,从数据中提取信息,并利用这些信息说明问题,在这个过程中,形成对数据的敏感, 养成会用数据“说事”的习惯。在小学数学中增加统计与概率课程的意义在于形成合理解读数据的能力、提高科学认识客观世界的能力、发展在现实情境中解决实际问题的能力。8. 极限思想事物是从量变到质变,极限方法的实质正是通过量变的无限过程达到质变。教学“圆的面积
8、和周长”中,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式,还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。9. 模型化思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。数学模型方法不仅是处理纯数学问题的一种经典方法,而且也是处理自然科学、社会科学、 工程技术和社会生产中各种实际问题的一般数学方法。用数学方
9、法解决某些实际问题,通常先把实际问题抽象成数学模型。 所谓数学模型, 是指从整体上描述现实原型的特性、关系及规律的一种数学方程式。按广义的解释,从一切数学概念、数学理论体系、各种数学公式、各种数学方程以及由公式系列构成的算法系统都称之为模型。但按狭义的解释,只有那些反应特定问题或特定的具体事物系统的数学关系结构,才叫数学模型。 比如根据具体问题中的数量关系,建立数学模型,列出方程进行求解。10. 化归思想化归思想是数学中最普遍使用的一种思想方法,其基本思想是:把甲问题的求解, 化归为乙问题的求解,然后通过乙问题的解反向去获得甲问题的解。一般是指不可逆向的“变换” 。它的基本形式有:化难为易,化
10、生为熟,化繁为简,化整为零,化曲为直等。如求组合图形的面积时先把组合图形割补成学过的简单图形,然后计算出各部分面积的和或差,均能使学生体会化归法的本质。11. 转换思想转换思想是一种解决数学问题的重要策略,是由一种形式变换成另一种形式的思想方法,这里的变换是可逆的双向变换。在解决数学问题时,转换是一种非常有用的策略。对问题进行转换时,既可转换已知条件,也可转换问题的结论;转换可以是等价的,也可以是不等价的,用转换思想来解决数学问题,转换仅是第一步,第二步要对转换后的问题进行求解 ,第三步要将转换后问题的解答反演成问题的解答。如果采用等价关系作转换,可直接求出解而省略反演这一步。如计算: 2.8
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年中小学数学中常见的数学思想方法简介 2022 年中 小学 数学 常见 思想 方法 简介
限制150内