2022年二次根式提高练习习题 .pdf
《2022年二次根式提高练习习题 .pdf》由会员分享,可在线阅读,更多相关《2022年二次根式提高练习习题 .pdf(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载二次根式(一)判断题: (每小题1 分,共 5 分)1ab2)2( 2ab()232 的倒数是32 ()32) 1(x2)1(x()4ab、31ba3、bax2是同类二次根式()5x8,31,29x都不是最简二次根式 ()(二)填空题: (每小题2 分,共 20 分)6当 x_时,式子31x有意义7化简8152710231225a8a12a的有理化因式是_9当 1x4 时, |x 4|122xx_10方程2(x1) x1 的解是 _11已知 a、b、c 为正数, d为负数,化简2222dcabdcab_12比较大小:721_34113化简: ( 752)2000 ( 7 52)
2、2001_14若1x3y0,则 ( x1)2( y3)2_15x,y 分别为 811的整数部分和小数部分,则2xyy2_(三)选择题: (每小题3 分,共 15 分)16已知233xx x3x,则()(A)x0(B)x 3(C)x 3( D) 3x0 17若 xy0,则222yxyx222yxyx()(A)2x(B)2y( C) 2x(D) 2y18若 0 x1,则4)1(2xx4)1(2xx等于()(A)x2(B)x2(C) 2x(D)2x19化简aa3(a0)得()(A)a(B)a(C)a(D)a20当 a0,b0 时, a2abb 可变形为()(A)2)(ba(B)2)(ba(C)2)(
3、ba(D)2)(ba(四)计算题: (每小题6 分,共 24 分)21 (235) (235) ;2211457114732;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 5 页学习必备欢迎下载23( a2mnmabmnmnnm) a2b2mn;24(abaabb)(babaaabbabba) (ab) (五)求值: (每小题7 分,共 14 分)25已知 x2323,y2323,求32234232yxyxyxxyx的值26当 x12时,求2222axxaxx222222axxxaxx221ax的值六、解答题: (每小题8 分,共 1
4、6 分)27计算( 251) (211321431100991) 28若 x,y 为实数,且yx4114x21求xyyx2xyyx2的值(一)判断题: (每小题1 分,共 5 分)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 5 页学习必备欢迎下载1、 【提示】2)2(|2|2 【答案】2、 【提示】2314323(32) 【答案】3、 【提示】2)1(x|x1|,2)1(xx1 (x1) 两式相等,必须 x1 但等式左边x 可取任何数 【答案】4、 【提示】31ba3、bax2化成最简二次根式后再判断【答案】5、29x是最简二次根式
5、 【答案】(二)填空题: (每小题2 分,共 20 分)6、 【提示】x何时有意义? x0分式何时有意义?分母不等于零【答案】 x 0且 x 97、 【答案】 2aa 【点评】注意除法法则和积的算术平方根性质的运用8、【提示】(a12a) (_) a222)1(aa12a 【答案】 a12a9、 【提示】 x22x 1()2, x1当 1x4 时, x4,x1 是正数还是负数?x 4 是负数, x1 是正数【答案】 310、 【提示】把方程整理成axb 的形式后, a、b 分别是多少?12,12 【答案】 x32211、 【提示】22dc|cd| cd【答案】abcd 【点评】ab2)( ab
6、(ab 0) ,abc2d2(cdab) (cdab) 12、 【提示】 2728,4348【答案】 【点评】先比较28,48的大小,再比较281,481的大小,最后比较281与481的大小13、 【提示】 ( 752)2001( 752)2000 (_) 752 (752) ( 752)? 1 【答案】 752【点评】注意在化简过程中运用幂的运算法则和平方差公式14、 【答案】 40【点评】1x0,3y0当1x3y0 时, x10,y3015、 【提示】3114,_811_ 4,5由于811介于4 与 5之间,则其整数部分x?小数部分y? x4,y411 【答案】 5【点评】求二次根式的整数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年二次根式提高练习习题 2022 二次 根式 提高 练习 习题
限制150内