2022年二次函数知识点总结及基础题 .pdf
《2022年二次函数知识点总结及基础题 .pdf》由会员分享,可在线阅读,更多相关《2022年二次函数知识点总结及基础题 .pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、名师总结优秀知识点二次函数知识点总结及基础题1. 定义:一般地,如果cbacbxaxy,(2是常数,)0a,那么y叫做x的二次函数 . 2. 二次函数由特殊到一般,可分为以下几种形式:2axy;kaxy2;2hxay;khxay2;cbxaxy2. 3. 二次函数2axy的性质(1)抛物线2axy的顶点是坐标原点,对称轴是y轴. (2)函数2axy的图像与a的符号关系 . 当0a时抛物线开口向上顶点为其最低点;当0a时抛物线开口向下顶点为其最高点. (3)顶点是坐标原点,对称轴是y轴的抛物线的解析式形式为2axy)(0a. 4. 抛物线的三要素:开口方向、对称轴、顶点. a的符号决定抛物线的开
2、口方向:当0a时,开口向上;当0a时,开口向下;a相等,抛物线的开口大小、形状相同. 平行于y轴(或重合)的直线记作hx. 特别地,y轴记作直线0 x. 5. 顶点决定抛物线的位置. 几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 6. 求抛物线的顶点、对称轴的方法( 1)公式法:abacabxacbxaxy442222,顶点是),(abacab4422,对称轴是直线abx2. (2)配方法:运用配方的方法,将抛物线的解析式化为khxay2的形式,得到顶点为(h,k) ,对称轴是直线hx. (3)运用抛物线的对称性:由于抛物线是以对称轴为
3、轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. 7. 抛物线cbxaxy2中,cba,的作用(1)a决定开口方向及开口大小,这与2axy中的a完全一样 . 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 6 页名师总结优秀知识点(2)b和a共同决定抛物线对称轴的位置. 由于抛物线cbxaxy2的对称轴是直线abx2,故:0b时,对称轴为y轴;0ab(即a、b同号)时,对称轴在y轴左侧;0ab(即a、b异号)时,对称轴在y轴右侧 . (3)c的大小决定抛物线cbxaxy2与y轴交点的位置. 当0
4、 x时,cy,抛物线cbxaxy2与y轴有且只有一个交点(0,c) :0c,抛物线经过原点; 0c, 与y轴交于正半轴;0c, 与y轴交于负半轴. 8. 几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标2axykaxy22hxaykhxay2cbxaxy29. 二次函数的解析式(1)一般式:cbxaxy2. 已知图像上三点或三对x、y的值,通常选择一般式. (2)顶点式:khxay2. 已知图像的顶点或对称轴,通常选择顶点式. (3)交点式:已知图像与x轴的交点坐标1x、2x,通常选用交点式:21xxxxay. 10. 直线与抛物线的交点(1)y轴与抛物线cbxaxy2得交点
5、为 (0, c). (2)抛物线与x轴的交点二次函数cbxaxy2的图像与x轴的两个交点的横坐标1x、2x,是对应一元二次方程02cbxax的两个实数根. 抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:有两个交点0抛物线与x轴相交;有一个交点(顶点在x轴上)0抛物线与x轴相切;没有交点0抛物线与x轴相离 . 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 6 页名师总结优秀知识点( 3)与y轴平行的直线hx与抛物线cbxaxy2有且只有一个交点(h,cbhah2(4)平行于x轴的直线与抛物线的交点同( 3)一样可能有0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年二次函数知识点总结及基础题 2022 二次 函数 知识点 总结 基础
限制150内