2022年二次根式知识点及习题 .pdf
《2022年二次根式知识点及习题 .pdf》由会员分享,可在线阅读,更多相关《2022年二次根式知识点及习题 .pdf(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次根式知识点一:二次根式的概念形如()的式子叫做二次根式。注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,等是二次根式,而,等都不是二次根式。知识点二:取值范围1. 二次根式有意义的条件:由二次根式的意义可知,当a0 时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。2. 二次根式无意义的条件:因负数没有算术平方根,所以当a0 时,没有意义。知识点三:二次根式()的非负性()表示 a 的算术平方根,也就是说,()是一个非负数,即0() 。注:因为二次根式()表示 a 的算术
2、平方根,而正数的算术平方根是正数,0 的算术平方根是0,所以非负数()的算术平方根是非负数,即0() ,这个性质也就是非负数的算术平方根的性质, 和绝对值、 偶次方类似。 这个性质在解答题目时应用较多,如若, 则 a=0,b=0;若,则 a=0,b=0;若,则 a=0,b=0。知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。注:二次根式的性质公式()是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若,则,如:,. 知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。注:1、化简时,一定要弄明白被开方数的底数a
3、 是正数还是负数,若是正数或0,则等于a 本身,即;若 a 是负数,则等于a 的相反数 -a,即;2、中的 a 的取值范围可以是任意实数,即不论a 取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a 的平方的算术平方根;在中, 而中 a可以是正实数, 0,负实数。 但与都是非负数,即,。因而它的运算的结果是有差别的,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 9 页而2、相同点: 当被开方数都是非负数,即时
4、,=;时,无意义, 而. 知识点七:二次根式的性质和最简二次根式如:不含有可化为平方数或平方式的因数或因式的有2、3、a(a0)、 x+y 等;含有可化为平方数或平方式的因数或因式的有4、9、a2、 ( x+y)2 、 x2+2xy+y2等( 3)最终结果分母不含根号。知识点八:二次根式的乘法和除法1. 积的算数平方根的性质ab=ab(a0,b0)2. 乘法法则ab=ab(a0,b0)二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。3. 除法法则ab=ab(a0,b0)二次根式的除法运算法则,用语言叙述为:两个数的算数平方根的商,等于这两个数商的算
5、数平方根。4. 有理化根式。如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式, 也称有理化因式。知识点九:二次根式的加法和减法1 同类二次根式一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。2 合并同类二次根式把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。3 二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。知识点十:二次根式的混合运算1 确定运算顺序2 灵活运用运算定律3 正确使用乘法公式4 大多数分母有理化要及时5 在有些简便运算中也许可以约分,不要盲目有理化精选学习资料
6、 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 9 页知识点十一:分母有理化分母有理化有两种方法I. 分母是单项式如: a/ b=ab/ bb=ab/b II.分母是多项式要利用平方差公式如 1/ ab=ab/( ab)( ab)=ab/a b 如图注意: 1. 根式中不能含有分母 2.分母中不能含有根式。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 9 页“二次根式”经典练习题【典型例题 】一. 利用二次根式的双重非负性来解题(0a(a0) ,即一个非负数的算术平方根是一个非负数。)1.
7、下列各式中一定是二次根式的是() 。A、3;B、x;C、12x;D、1x2.x 取何值时,下列各式在实数范围内有意义。( 1);2x( 2)121x( 3)xx21( 4)45xx( 5)1213xx(6)若1) 1(xxxx,则 x 的取值范围是(7)若1313xxxx,则 x 的取值范围是。(7)注:(书写格式(4) 由 5+x0 且 x+40 得 x 5 且 x 4当 x 5 且 x 4 时代数式45xx在实数范围内有意义)3.若13m有意义,则m能取的最小整数值是4. 若20m是一个正整数,则正整数m的最小值是 _5.当 x 为何整数时,1110 x有最小整数值,这个最小整数值为。6.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年二次根式知识点及习题 2022 二次 根式 知识点 习题
限制150内