2021届新高考版高考数学一轮复习精练:§9.3 椭圆(试题部分) .docx
《2021届新高考版高考数学一轮复习精练:§9.3 椭圆(试题部分) .docx》由会员分享,可在线阅读,更多相关《2021届新高考版高考数学一轮复习精练:§9.3 椭圆(试题部分) .docx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、9.3椭圆基础篇固本夯基【基础集训】考点一椭圆的定义及标准方程1.已知椭圆y2m+x22=1的一个焦点为0,12,则m=()A.1B.2C.3D.94答案D2.已知椭圆C:x2a2+y2b2=1(ab0)的左、右焦点为F1、F2,离心率为33,过F2的直线l交C于A、B两点.若AF1B的周长为43,则C的方程为()A.x23+y22=1B.x23+y2=1C.x212+y28=1D.x212+y24=1答案A3.在平面直角坐标系xOy中,P是椭圆y24+x23=1上的一个动点,点A(1,1),B(0,-1),则|PA|+|PB|的最大值为()A.5B.4C.3D.2答案A4.椭圆x29+y22
2、5=1上的一点P到两焦点的距离的乘积为m,当m取最大值时,点P的坐标是.答案(-3,0)或(3,0)考点二椭圆的几何性质5.以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则椭圆的离心率是()A.13B.33C.34D.223答案D6.设椭圆C:x2a2+y2b2=1(ab0)的左、右焦点分别为F1、F2,P是C上的点,PF2F1F2,PF1F2=30,则C的离心率为()A.36B.13C.12D.33答案D7.设椭圆的方程为x2a2+y2b2=1b32a0,右焦点为F(c,0)(c0),方程ax2+bx-c=0的两实根分别为x1,x2,则x12+x22的取值范围是()A.0,32B.1,
3、32C.1,34D.1,74答案D考点三直线与椭圆的位置关系8.(2019河北衡水中学五调,6)与椭圆x22+y2=1有相同的焦点且与直线l:x-y+3=0相切的椭圆的离心率为()A.22B.55C.12D.15答案B9.椭圆x225+y216=1的左,右焦点分别为F1,F2,弦AB过F1,若ABF2的内切圆周长为,A,B两点的坐标分别为(x1,y1),(x2,y2),则|y1-y2|的值为()A.53B.103C.103D.53答案A10.已知P(1,1)为椭圆x24+y22=1内一定点,经过P引一条弦,使此弦被P点平分,且弦与椭圆交于A、B两点,则此弦所在直线的方程为.答案x+2y-3=0
4、11.设F1,F2分别是椭圆C:x2a2+y2b2=1(ab0)的左,右焦点,M是C上一点且MF2与x轴垂直.直线MF1与C的另一个交点为N.(1)若直线MN的斜率为34,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.解析(1)根据题意知F1(-c,0),Mc,b2a.由kMN=34得b2a-0c-(-c)=34,即2b2=3ac,将b2=a2-c2代入得2(a2-c2)=3ac,2c2-2a2+3ac=0,2e2+3e-2=0,解得e=12或e=-2(舍),故C的离心率为12.(2)由题意,知原点O为F1F2的中点,MF2y轴,设直线MF1与y轴的交点
5、为D,则D(0,2)是线段MF1的中点,故b2a=4,即b2=4a,由|MN|=5|F1N|得|DF1|=2|F1N|.设N(x1,y1),由题意知y10)的左、右焦点分别为F1,F2,P为椭圆上异于端点的任意一点,PF1,PF2的中点分别为M,N,O为坐标原点,四边形OMPN的周长为23,则PF1F2的周长是()A.2(2+3) B.4+23C.2+3D.2+23答案A3.(2018湖北重点中学4月联考,7)已知椭圆x24+y23=1的左、右焦点分别为F1、F2,过F2且垂直于长轴的直线交椭圆于A,B两点,则ABF1内切圆的半径为()A.43B.1C.45D.34答案D考法二椭圆离心率问题的
6、求法4.(2019福建3月质检,9)设椭圆E的两焦点分别为F1,F2,以F1为圆心,|F1F2|为半径的圆与E交于P,Q两点.若PF1F2为直角三角形,则E的离心率为()A.2-1 B.5-12C.22D.2+1答案A5.(2018河北衡水金卷二模,7)我国自主研制的第一个月球探测器“嫦娥一号”卫星在西昌卫星发射中心成功发射后,在地球轨道上经历3次调相轨道变轨,奔向月球,进入月球轨道,“嫦娥一号”轨道是以地心为一个焦点的椭圆,设地球半径为R,卫星近地点,远地点离地面的距离分别是R2,5R2(如图所示),则“嫦娥一号”卫星轨道的离心率为()A.25B.15C.23D.13答案A6.(2019河北
7、武邑中学二模,12)设F,B分别为椭圆x2a2+y2b2=1(ab0)的右焦点和上顶点,O为坐标原点,C是直线y=bax与椭圆在第一象限内的交点,若FO+FC=(BO+BC),则椭圆的离心率是()A.22+17B.22-17C.22-13D.2-1答案A考法三直线与椭圆位置关系问题的解法7.(2019北京清华中学生标准学术能力试卷文,6)已知椭圆x2a2+y24=1(a2)的左、右焦点分别为F1、F2,过F1的直线交椭圆于A,B两点.若|AF2|+|BF2|的最大值为283,则该椭圆的离心率为()A.22B.53C.12D.59答案B8.(2017北京,19,14分)已知椭圆C的两个顶点分别为
8、A(-2,0),B(2,0),焦点在x轴上,离心率为32.(1)求椭圆C的方程;(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:BDE与BDN的面积之比为45.解析本题考查椭圆的方程和性质,直线的方程等知识,考查运算求解能力.(1)设椭圆C的方程为x2a2+y2b2=1(ab0).由题意得a=2,ca=32,解得c=3.所以b2=a2-c2=1.所以椭圆C的方程为x24+y2=1.(2)证明:设M(m,n),则D(m,0),N(m,-n).由题设知m2,且n0.直线AM的斜率kAM=nm+2,故直线DE的斜率kDE=-m+2n.所以直线D
9、E的方程为y=-m+2n(x-m).直线BN的方程为y=n2-m(x-2).联立y=-m+2n(x-m),y=n2-m(x-2),解得点E的纵坐标yE=-n(4-m2)4-m2+n2.由点M在椭圆C上,得4-m2=4n2.所以yE=-45n.又SBDE=12|BD|yE|=25|BD|n|,SBDN=12|BD|n|,所以BDE与BDN的面积之比为45.【五年高考】考点一椭圆的定义及标准方程1.(2019课标,10,5分)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.x22+y2=1B.
10、x23+y22=1C.x24+y23=1D.x25+y24=1答案B2.(2019课标,15,5分)设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限.若MF1F2为等腰三角形,则M的坐标为.答案(3,15)3.(2015陕西,20,12分)已知椭圆E:x2a2+y2b2=1(ab0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为12c.(1)求椭圆E的离心率;(2)如图,AB是圆M:(x+2)2+(y-1)2=52的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.解析(1)过点(c,0),(0,b)的直线方程为bx+cy-bc=0,则原点O
11、到该直线的距离d=bcb2+c2=bca,由d=12c,得a=2b=2a2-c2,可得离心率ca=32.(2)解法一:由(1)知,椭圆E的方程为x2+4y2=4b2.依题意,圆心M(-2,1)是线段AB的中点,且|AB|=10.易知,AB与x轴不垂直,设其方程为y=k(x+2)+1,代入得(1+4k2)x2+8k(2k+1)x+4(2k+1)2-4b2=0.设A(x1,y1),B(x2,y2),则x1+x2=-8k(2k+1)1+4k2,x1x2=4(2k+1)2-4b21+4k2.由x1+x2=-4,得-8k(2k+1)1+4k2=-4,解得k=12.从而x1x2=8-2b2.于是|AB|=
12、1+122|x1-x2|=52(x1+x2)2-4x1x2=10(b2-2).由|AB|=10,得10(b2-2)=10,解得b2=3.故椭圆E的方程为x212+y23=1.解法二:由(1)知,椭圆E的方程为x2+4y2=4b2.依题意,点A,B关于圆心M(-2,1)对称,且|AB|=10.设A(x1,y1),B(x2,y2),则x12+4y12=4b2,x22+4y22=4b2,两式相减并结合x1+x2=-4,y1+y2=2,得-4(x1-x2)+8(y1-y2)=0,易知AB与x轴不垂直,则x1x2,所以AB的斜率kAB=y1-y2x1-x2=12.因此直线AB的方程为y=12(x+2)+
13、1,代入得x2+4x+8-2b2=0.所以x1+x2=-4,x1x2=8-2b2.于是|AB|=1+122|x1-x2|=52(x1+x2)2-4x1x2=10(b2-2).由|AB|=10,得10(b2-2)=10,解得b2=3.故椭圆E的方程为x212+y23=1.解题关键对于第(2)问,利用弦长及韦达定理或点差法构造关于参数的方程是解题的关键.考点二椭圆的几何性质4.(2017浙江,2,4分)椭圆x29+y24=1的离心率是()A.133B.53C.23D.59答案B5.(2019北京,4,5分)已知椭圆x2a2+y2b2=1(ab0)的离心率为12,则()A.a2=2b2B.3a2=4
14、b2C.a=2bD.3a=4b答案B6.(2018课标,12,5分)已知F1,F2是椭圆C:x2a2+y2b2=1(ab0)的左、右焦点,A是C的左顶点,点P在过A且斜率为36的直线上,PF1F2为等腰三角形,F1F2P=120,则C的离心率为()A.23B.12C.13D.14答案D7.(2017课标,10,5分)已知椭圆C:x2a2+y2b2=1(ab0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为()A.63B.33C.23D.13答案A8.(2016课标,11,5分)已知O为坐标原点,F是椭圆C:x2a2+y2b2=1(ab0
15、)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PFx轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.13B.12C.23D.34答案A9.(2018北京,14,5分)已知椭圆M:x2a2+y2b2=1(ab0),双曲线N:x2m2-y2n2=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为.答案3-1;210.(2019江苏,17,14分)如图,在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(ab0)的焦点为F1(-1,0),F2(1,0).过F
16、2作x轴的垂线l,在x轴的上方,l与圆F2:(x-1)2+y2=4a2交于点A,与椭圆C交于点D.连接AF1并延长交圆F2于点B,连接BF2交椭圆C于点E,连接DF1.已知DF1=52.(1)求椭圆C的标准方程;(2)求点E的坐标.解析本题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.(1)设椭圆C的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.又因为DF1=52,AF2x轴,所以DF2=DF12-F1F22=522-22=32.因此2a=DF1+DF2=4,从而a=2.由b
17、2=a2-c2,得b2=3.因此,椭圆C的标准方程为x24+y23=1.(2)解法一:由(1)知,椭圆C:x24+y23=1,a=2.因为AF2x轴,所以点A的横坐标为1.将x=1代入圆F2的方程(x-1)2+y2=16,解得y=4.因为点A在x轴上方,所以A(1,4).又F1(-1,0),所以直线AF1:y=2x+2.由y=2x+2,(x-1)2+y2=16,得5x2+6x-11=0,解得x=1或x=-115.将x=-115代入y=2x+2,得y=-125.因此B-115,-125.又F2(1,0),所以直线BF2:y=34(x-1).由y=34(x-1),x24+y23=1,得7x2-6x
18、-13=0,解得x=-1或x=137.又因为E是线段BF2与椭圆的交点,所以x=-1.将x=-1代入y=34(x-1),得y=-32.因此E-1,-32.解法二:由(1)知,椭圆C:x24+y23=1.如图,连接EF1.因为BF2=2a,EF1+EF2=2a,所以EF1=EB,从而BF1E=B.因为F2A=F2B,所以A=B.所以A=BF1E,从而EF1F2A.因为AF2x轴,所以EF1x轴.因为F1(-1,0),由x=-1,x24+y23=1,解得y=32.又因为E是线段BF2与椭圆的交点,所以y=-32.因此E-1,-32.考点三直线与椭圆的位置关系11.(2019天津,18,13分)设椭
19、圆x2a2+y2b2=1(ab0)的左焦点为F,上顶点为B.已知椭圆的短轴长为4,离心率为55.(1)求椭圆的方程;(2)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N在y轴的负半轴上.若|ON|=|OF|(O为原点),且OPMN,求直线PB的斜率.解析本题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.(1)设椭圆的半焦距为c,依题意,2b=4,ca=55,又a2=b2+c2,可得a=5,b=2,c=1.所以,椭圆的方程为x25+y24=1.(2)由题意,设P(xP,yP)(xP
20、0),M(xM,0).设直线PB的斜率为k(k0),又B(0,2),则直线PB的方程为y=kx+2,与椭圆方程联立y=kx+2,x25+y24=1,整理得(4+5k2)x2+20kx=0,可得xP=-20k4+5k2,代入y=kx+2得yP=8-10k24+5k2,进而直线OP的斜率yPxP=4-5k2-10k.在y=kx+2中,令y=0,得xM=-2k.由题意得N(0,-1),所以直线MN的斜率为-k2.由OPMN,得4-5k2-10k-k2=-1,化简得k2=245,从而k=2305.所以,直线PB的斜率为2305或-2305.思路分析(1)根据条件求出基本量a,b得到椭圆方程.(2)要利
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021届新高考版高考数学一轮复习精练:§9.3椭圆试题部分 2021 高考 数学 一轮 复习 精练 9.3 椭圆 试题 部分
限制150内