2021届课标版高考理科数学大一轮复习精练:11.2 离散型随机变量及其分布列、均值与方差(试题部分) .docx
《2021届课标版高考理科数学大一轮复习精练:11.2 离散型随机变量及其分布列、均值与方差(试题部分) .docx》由会员分享,可在线阅读,更多相关《2021届课标版高考理科数学大一轮复习精练:11.2 离散型随机变量及其分布列、均值与方差(试题部分) .docx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、11.2离散型随机变量及其分布列、均值与方差探考情 悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.离散型随机变量的分布列(1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.(2)理解超几何分布及其导出过程,并能进行简单的应用.(3)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题2019课标,13,5分离散型随机变量的均值计算利用频率估计概率2019课标,21,12分求离散型随机变量的分布列数列2018课标,20,12分利用期望进行决策二项分布的均值、导数2017课标,18,
2、12分离散型随机变量的分布列、期望利用频率估计概率2.离散型随机变量的均值与方差2016课标,19,12分求离散型随机变量的分布列,利用期望进行决策利用相互独立事件的概率公式求概率分析解读本节内容常以实际问题为背景,考查离散型随机变量的分布列、期望和方差,解题时要熟悉相关公式的应用.考查学生的数据分析能力和数学运算能力.多以解答题的形式呈现,分值约为12分.破考点 练考向【考点集训】考点一离散型随机变量的分布列(2019广东汕头一模,5)已知离散型随机变量X的分布列为X0123P82749m127则X的数学期望E(X)=()A.23B.1C.32D.2答案B考点二离散型随机变量的均值与方差1.
3、(2018浙江重点中学模拟,8)已知随机变量满足P(=0)=13,P(=1)=x,P(=2)=23-x,若0x23,则()A.E()随着x的增大而增大,D()随着x的增大而增大B.E()随着x的增大而减小,D()随着x的增大而增大C.E()随着x的增大而减小,D()随着x的增大而减小D.E()随着x的增大而增大,D()随着x的增大而减小答案C2.(2018河南南阳一中第七次考试,14)已知5件产品中有2件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为,则E()=.答案72炼技法 提能力【方法集训】方法1离散型随机变量的分布列、期望与方差的求法(2018天津,16,13分)已知某单位甲
4、、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.解析本题主要考查随机抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式等基础知识.考查运用概率知识解决简单实际问题的能力.(1)由已知,甲、乙、丙三个部门的员工人数
5、之比为322,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(2)(i)随机变量X的所有可能取值为0,1,2,3.P(X=k)=C4kC33-kC73(k=0,1,2,3).所以,随机变量X的分布列为X0123P13512351835435随机变量X的数学期望E(X)=0135+11235+21835+3435=127.(ii)设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=BC,且B与C互斥.由(i)知,P(B)=P(X=2),P(C)=P(X
6、=1),故P(A)=P(BC)=P(X=2)+P(X=1)=67.所以,事件A发生的概率为67.导师点睛超几何分布描述的是不放回抽样问题,随机变量为抽到某类个体的个数.超几何分布的特点:(1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考察某类个体个数X的概率分布.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.方法2利用期望与方差进行决策的方法(2020届四川成都双流中学10月月考,19)甲、乙两品牌计划入驻某商场,该商场批准两个品牌先进场试销5天.两品牌提供的返利方案如下:甲品牌无固定返利,卖出10件以内(含10件)的产品,每件产品返利5元
7、,超出10件的部分每件返利7元;乙品牌每天固定返利20元,且每卖出一件产品再返利3元.经统计,两家品牌在试销期间的销售件数的茎叶图如下:甲乙667069201322(1)现从乙品牌试销的5天中随机抽取3天,求这3天的销售量中至少有一天低于10的概率;(2)若将频率视作概率,回答以下问题:记甲品牌的日返利额为X(单位:元),求X的分布列和数学期望;商场拟在甲、乙两品牌中选择一个长期销售,如果仅从日返利额的角度考虑,请利用所学的统计学知识为商场做出选择,并说明理由.解析本题考查古典概型概率的计算,随机变量的分布列和数学期望的计算,考查学生的运算求解能力,属于中档题.(1)解法一:设事件A为“从乙品
8、牌试销的5天中随机抽取3天,这3天的销售量中至少有一天低于10”,则P(A)=C21C32+C22C31C53=910.解法二:设事件A为“从乙品牌试销的5天中随机抽取3天,这3天的销售量中至少有一天低于10”,则事件A为“从乙品牌试销的5天中随机抽取3天,这3天的销售量都不低于10”,则P(A)=1-P(A)=1-C33C53=1-110=910.(2)设甲品牌的日销售量为随机变量,则甲品牌的日返利额X(单位:元)与的关系为X=5,010,50+7(-10),11,当=6时,X=30;当=7时,X=35;当=10时,X=50;当=12时,X=64.故X的分布列为X30355064P25151
9、515所以E(X)=3025+3515+5015+6415=41.8(元).解法一:设乙品牌的日销售量为随机变量,乙品牌的日返利额Y(单位:元)与的关系为Y=20+3,且的分布列为691213P15152515所以E()=615+915+1225+1315=10.4,则E(Y)=E(3+20)=3E()+20=310.4+20=51.2.因为乙品牌的日平均返利额大于甲品牌的日平均返利额,所以如果仅从日返利额的角度考虑,商场应选择乙品牌长期销售.解法二:乙品牌的日返利额Y(单位:元)的取值集合为38,47,56,59,分布列为Y38475659P15152515则E(Y)=3815+4715+5
10、625+5915=51.2.因为乙品牌的日平均返利额大于甲品牌的日平均返利额,所以如果仅从日返利额的角度考虑,商场应选择乙品牌长期销售.【五年高考】A组统一命题课标卷题组考点一离散型随机变量的分布列1.(2019课标,21,12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠
11、治愈且施以乙药的白鼠未治愈,则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则乙药得1分,甲药得-1分;若都治愈或都未治愈,则两种药均得0分.甲、乙两种药的治愈率分别记为和,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,pi(i=0,1,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,pi=api-1+bpi+cpi+1(i=1,2,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设=0.5,=0.8.(i)证明:pi+1-pi(i=0,1,2,7)为等比数列;(ii
12、)求p4,并根据p4的值解释这种试验方案的合理性.解析本题主要考查概率与数列的综合,考查离散型随机变量的分布列,等比数列的判定及累加法的应用,考查学生灵活运用概率与数列知识去分析、解决实际问题的能力,综合考查学生的逻辑推理能力、数学运算能力以及应用意识、创新意识.(1)X的所有可能取值为-1,0,1.P(X=-1)=(1-),P(X=0)=+(1-)(1-),P(X=1)=(1-).所以X的分布列为X-101P(1-)+(1-)(1-)(1-)(2)(i)证明:由(1)得a=0.4,b=0.5,c=0.1.因此pi=0.4pi-1+0.5pi+0.1pi+1,故0.1(pi+1-pi)=0.4
13、(pi-pi-1),即pi+1-pi=4(pi-pi-1).又因为p1-p0=p10,所以pi+1-pi(i=0,1,2,7)是公比为4,首项为p1的等比数列.(ii)由(i)可得p8=p8-p7+p7-p6+p1-p0+p0=(p8-p7)+(p7-p6)+(p1-p0)=48-13p1.由于p8=1,故p1=348-1,所以p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0)=44-13p1=1257.p4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p4=12570.003 9,此时得出错误结论的概率非
14、常小,说明这种试验方案合理.试题分析本题以试验新药疗效为背景,命制了一个概率与数列的综合性问题,试题很新颖,创新度高,考查学生灵活运用数学知识解决实际问题的能力.本题层次分明,内容丰富,区分度较高,使不同学生的理性思维的广度和深度得到了充分展示.2.(2017课标,18,12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶
15、.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温10,15)15,20)20,25)25,30)30,35)35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?解析本题考查随机变量的分布列,数学期望.(1)由题意知,X所有可能取值为200,300,500,由表格数据知P(X=200)=2+1690=0.2,P(X=300)=3
16、690=0.4,P(X=500)=25+7+490=0.4.因此X的分布列为X200300500P0.20.40.4(2)由题意知,这种酸奶一天的需求量至多为500瓶,至少为200瓶,因此只需考虑200n500.当300n500时,若最高气温不低于25,则Y=6n-4n=2n;若最高气温位于区间20,25),则Y=6300+2(n-300)-4n=1 200-2n;若最高气温低于20,则Y=6200+2(n-200)-4n=800-2n.因此EY=2n0.4+(1 200-2n)0.4+(800-2n)0.2=640-0.4n.当200n300时,若最高气温不低于20,则Y=6n-4n=2n;
17、若最高气温低于20,则Y=6200+2(n-200)-4n=800-2n.因此EY=2n(0.4+0.4)+(800-2n)0.2=160+1.2n.所以n=300时,Y的数学期望达到最大值,最大值为520元.名师点拨求离散型随机变量的分布列、均值与方差需过四关:“题目的理解关”.要抓住题中关键字句,尽可能转化为自己熟悉的模型.“随机变量的取值关”.准确无误地找出随机变量的所有可能取值.“事件的类型关”.概率问题中的事件涉及等可能事件、互斥事件、对立事件、相互独立事件等,在计算相应的概率前要先确定事件的类型.“概率的运算关”.运用公式P(A)=mn,P(A+B)=P(A)+P(B),P(AB)
18、=P(A)P(B),P(=k)=Cnkpk(1-p)n-k(k=0,1,2,n)时,要注意准确无误.考点二离散型随机变量的均值与方差1.(2019课标,13,5分)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.答案0.982.(2018课标,20,12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的
19、所有产品作检验.设每件产品为不合格品的概率都为p(0p0;当p(0.1,1)时, f (p)400,故应该对余下的产品作检验.B组自主命题省(区、市)卷题组考点一离散型随机变量的分布列(2019北京,17,13分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付金额(元)支付方式(0,1 000(1 000,2 000大于2 000仅使用A18人9人3人仅使用B10人14
20、人1人(1)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1 000元的人数,求X的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2 000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2 000元的人数有变化?说明理由.解析本题主要考查用样本分布估计总体分布,离散型随机变量的分布列与期望,以实际生活为背景考查学生解决实际问题的能力,渗透了数据分析的核心素养,体现了应用与创新
21、意识.(1)由题意知,样本中仅使用A的学生有18+9+3=30人,仅使用B的学生有10+14+1=25人,A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100-30-25-5=40人.所以从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率估计为40100=0.4.(2)X的所有可能值为0,1,2.记事件C为“从样本仅使用A的学生中随机抽取1人,该学生上个月的支付金额大于1 000元”,事件D为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于1 000元”.由题设知,事件C,D相互独立,且P(C)=9+330=0.4,P(D)=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021届课标版高考理科数学大一轮复习精练:11.2离散型随机变量及其分布列、均值与方差试题部分 2021 届课标版 高考 理科 数学 一轮 复习 精练 11.2 离散 随机变量 及其 分布 均值
链接地址:https://www.taowenge.com/p-2507854.html
限制150内