2022年仪器分析知识点整理 .pdf
《2022年仪器分析知识点整理 .pdf》由会员分享,可在线阅读,更多相关《2022年仪器分析知识点整理 .pdf(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、仪器分析知识点教学内容绪论分子光谱法: UV-VIS 、IR、 F原子光谱法: AAS电化学分析法:电位分析法、电位滴定色谱分析法: GC、HPLC质谱分析法: MS、NRS第一章绪论经典分析方法与仪器分析方法有何不同?经典分析方法: 是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。仪器分析方法: 是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。仪器的主要性能指标的定义1、精密度(重现
2、性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。简述三种定量分析方法的特点和应用要求一、工作曲线法(标准曲线法、外标法)特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白应用要求: 试样的浓度或含量范围应在工作曲线的线性
3、范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。二、标准加入法(添加法、增量法)特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响应用要求: 适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况三、内标法特点:可扣除样品处理过程中的误差应用要求: 内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰第 2 章光谱分析法引论习 题1、吸收光谱和发射光谱的电子能动级跃迁的关系吸收光谱: 当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足E=hv 的关系时,将产生
4、吸收光谱。M+hv M*精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 16 页发射光谱: 物质通过激发过程获得能量,变为激发态原子或分子M* ,当从激发态过渡到低能态或某态时产生发射光谱。M* M+hv2、带光谱和线光谱带光谱: 是分子光谱法的表现形式。分子光谱法是由分子中电子能级、振动和转动能级的变化产生。线光谱:是原子光谱法的表现形式。原子光谱法是由原子外层或内层电子能级的变化产生的。第 6 章 原子吸收光谱法(P130)熟识 : 原子吸收光谱产生的机理以及影响原子吸收光谱轮廓的因素了解 : 原子吸收光谱仪的基本结构;空心阴极灯产
5、生锐线光源的原理掌握 : 火焰原子化器的原子化历程以及影响因素、原子吸收光谱分析干扰及其消除方法、AAS 测量条件的选择及定量分析方法(实验操作 )1、定义: 它是基于物质所产生的原子蒸气对特定谱线的吸收来进行定量分析的方法。基态原子吸收其共振辐射,外层电子由基态跃迁至激发态而产生原子吸收光谱。原子吸收光谱位于光谱的紫外区和可见区。2、原子吸收定量原理:频率为的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。3、谱线变宽的因素(P-131):多普勒( Doppler )宽度 D:由原子在空间作无规热运动所致。故又称热变宽。Doppler 宽度随温度升高和相对原子质量减小而变宽。压力变宽
6、L(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起外界压力愈大,浓度越高,谱线愈宽。4、对原子化器的基本要求:使试样有效原子化;使自由状态基态原子有效地产生吸收;具有良好的稳定性和重现形;操作简单及低的干扰水平等。1测量条件选择分析线:一般用共振吸收线。狭缝光度: W=DS 没有干扰情况下,尽量增加W,增强辐射能。灯电流:按灯制造说明书要求使用原子条件 :燃气:助燃气、燃烧器高度石墨炉各阶段电流值进样量 :(主要指非火焰方法)2分析方法(1). 工作曲线法最佳吸光度0.1-0.5,工作曲线弯曲原因:各种干扰效应。. 标准加入法标准加入法能消除基体干扰,不能消背景干扰。使用时,注意要扣除
7、背景干扰。习题引起谱线变宽的主要因素有哪些?自然变宽:无外界因素影响时谱线具有的宽度多普勒( Doppler )宽度 D:由原子在空间作无规热运动所致。故又称热变宽。. 压力变宽 L(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起自吸变宽:光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象。场致变宽 (field broadening) :包括 Stark 变宽 (电场 )和 Zeeman 变宽 (磁场 )火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响?化学计量火焰:由于燃气与助燃气之比与化学计量反应关系相近,又称为中性火焰,这类火焰 , 温度高、稳定、干扰小背
8、景低,适合于许多元素的测定。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 16 页贫燃火焰:指助燃气大于化学计量的火焰,它的温度较低,有较强的氧化性,有利于测定易解离,易电离元素,如碱金属。富燃火焰: 指燃气大于化学元素计量的火焰。其特点是燃烧不完全,温度略低于化学火焰,具有还原性,适合于易形成难解离氧化物的元素测定;干扰较多,背景高。火焰高度:火焰高度不同,其温度也不同;每一种火焰都有其自身的温度分布;一种元素在一种火焰中的不同火焰高度其吸光度值也不同;因此在火焰原子化法测定时要选择适合被测元素的火焰高度。原子吸收光谱法中的干扰有哪
9、些?如何消除这些干扰?一物理干扰: 指试样在转移、蒸发和原子化过程中,由于其物理特性的变化而引起吸光度下降的效应,是非选择性干扰。消除方法:稀释试样;配制与被测试样组成相近的标准溶液;采用标准化加入法。二化学干扰: 化学干扰是指被测元原子与共存组分发生化学反应生成稳定的化合物,影响被测元素原子化,是选择性干扰,一般造成A 下降。消除方法: (1)选择合适的原子化方法:提高原子化温度,化学干扰会减小,在高温火焰中P043-不干扰钙的测定。(2)加入释放剂(广泛应用)(3)加入保护剂:EDTA 、8羟基喹啉等,即有强的络合作用,又易于被破坏掉。(4)加基体改进剂(5)分离法三. 电离干扰:在高温下
10、原子会电离使基态原子数减少, 吸收下降 , 称电离干扰,造成A 减少。负误差消除方法:加入过量消电离剂。(所谓的消电离剂, 是电离电位较低的元素。加入时, 产生大量电子 , 抑制被测元素电离。)四. 光谱干扰:吸收线重叠:非共振线干扰:多谱线元素减小狭缝宽度或另选谱线谱线重叠干扰选其它分析线五.背景干扰:背景干扰也是光谱干扰,主要指分子吸与光散射造成光谱背景。(分子吸收是指在原子化过程中生成的分子对辐射吸收,分子吸收是带光谱。光散射是指原子化过程中产生的微小的固体颗粒使光产生散射,造成透过光减小,吸收值增加。 背景干扰, 一般使吸收值增加。产生正误差。)消除方法:用邻近非共振线校正背景连续光源
11、校正背景(氘灯扣背景)Zeaman 效应校正背景自吸效应校正背景第 3 章 紫外 -可见分光光度法(P21)UV-Vis :根据物质分子对200800 nm 光谱区域内辐射能的吸收来研究物质的性质、结构和含量的方法。3.1 紫外 -可见吸收光谱3.1.5 影响紫外 -可见光谱的因素:溶剂的影响极性:水甲醇 乙醇 丙酮 正丁醇 乙酸乙酯 乙醚 氯仿 二氯甲烷 苯四氯化碳 己烷 石油醚精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 16 页3.2 光的吸收定律Lambert-Beer 定律: A =k c l = -lgT = lgI0 /
12、 I l cm,c-mol/L ,k 值称为摩尔吸光系数(L mol-1 cm-1)A = lc3.4 分析条件的选择单光束分光光度计特点:只有一条光束单波长双光束分光光度计特点:在同一台仪器中使用两个完全相同的光束。双波长分光光度计:不需要参比溶液透光率读数的影响:结 论: 1. ?c/c 与透光率读数T 有函数关系 ;当 T=36.8% 时 (或 A=0.434) ,?c/c 最小。2. 当 T 读数在 70%10%,即 A 读数 0.151.0 范围时 , ?c/c 较小 ( 0.01M 时, Beer 定律会发生偏离。溶剂: 当待测物与溶剂发生缔合、离解及溶剂化反应时,产生的生成物与待
13、测物具有不同的吸收光谱,出现化学偏离。光散射:当试样是胶体或有悬浮物时,入射光通过溶液后,有一部分光因散射而损失,使吸光度增大, Beer 定律产生正偏差。(2)与仪器有关的因素单色光: Beer 定律只适用于单色光,非绝对的单色光,有可能造成Beer 定律偏离。谱带宽度: 当用一束吸光度随波长变化不大的复合光作为入射光进行测定时,吸光物质的吸光系数变化不大,对吸收定律所造成的偏离较小。对应克服方法:c 0.01M避免使用会与待测物发生反应的溶剂避免试样是胶体或有悬浮物精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 16 页在保证一定光
14、强的前提下,用尽可能窄的有效带宽宽度。选择吸光物质的最大吸收波长作为分析波长5、极性溶剂为什么会使*跃迁的吸收峰长移,却使n* 跃迁的吸收峰短移?溶剂极性不同会引起某些化合物吸收光谱的红移或蓝移,称溶剂效应。在 *跃迁中,激发态极性大于基态,当使用极性溶剂时,由于溶剂与溶质相互作用,激发态 *比基态 能量下降更多,因而使基态与激发态间能量差减小,导致吸收峰红移。在n *跃迁中,基态 n 电子与极性溶剂形成氢键,降低了基态能量,使激发态与基态间能量差增大,导致吸收峰蓝移。第五章分子发光分析法(P88)1. 荧光和磷光的产生:具有不饱和基团的基态分子受光照后,价电子跃迁产生荧光和磷光。2. 激发光
15、谱和发射光谱:激发光谱: 将激发光的光源用单色器分光,测定不同波长照射下所发射的荧光强度(F) ,以 F 做纵坐标,激发光波长做横坐标作图。激发光谱反映了激发光波长与荧光强度之间的关系。发射光谱: 固定激发光波长, 让物质发射的荧光通过单色器,测定不同波长的荧光强度,以荧光强度F 做纵坐标,荧光波长做横坐标作图。荧光光谱反映了发射的荧光波长与荧光强度的关系。3. 荧光和分子结构的关系发射荧光的物质应同时具备以下两个条件:物质分子必须具有能够吸收紫外或可见光的结构,并且能产生 * 或 n * 跃迁。荧光物质必须有较大的荧光量子产率。(1)跃迁类型:* 较 n* 跃迁的荧光效率高。(2)共轭结构:
16、 凡是能提高 电子共轭度的结构,都会增大荧光强度,并使荧光光谱长移。(3)刚性平面:分子的刚性及共平面性越大,荧光量子产率就越大。(4)取代基效应:在芳香化合物的芳香环上,给电子基团增强荧光,吸电子基团减弱荧光。影响荧光强度的因素及溶液荧光的猝灭(P9395)1. 影响荧光强度的因素(1) 溶剂(2) 温度低温下测定,提高灵敏度(3) pH值的影响当荧光物质本身是弱酸或弱碱时,溶液pH 值对该物质荧光强度有较大影响。(4) 内滤光作用和自吸收现象精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 16 页内滤光作用:溶液中若存在能吸收激发光
17、或荧光体所发射荧光的物质,会使荧光减弱的现象。自吸收现象: 荧光物质的荧光发射光谱短波长一端与该物质的吸收光谱的长波长一端有重叠,在溶液浓度较大时,一部分荧光被自身吸收。(5) 散射光的影响:应注意Raman 光的干扰(分子的运动方向和能量都改变了!)2. 溶液荧光的猝灭(P95)荧光猝灭:指荧光物质分子与溶剂分子或其他溶质分子相互作用引起荧光强度降低或荧光强度与浓度不呈线性关系的现象。(1)碰撞猝灭:猝灭剂分子与处于激发态的荧光物质分子碰撞而损失能量。(2)静态猝灭:部分荧光分子与熄灭剂分子作用生成了非荧光的配合物。(3)转入三重态的猝灭:在荧光物质分子中有溶解氧的存在或引入溴或碘后,易发生
18、体系跨越而转变成三重态。(4)发生电荷转移反应的猝灭:(5)荧光物质的自猝灭:单重激发态分子和未激发的荧光物质分子碰撞引起自猝灭。荧光物质浓度超过1g/L 时,会产生自身猝灭。荧光强度与溶液浓度的关系(P93)If = K ?c(l c 0.05)分子荧光分析法的应用定性分析:因物质结构不同,吸收紫外光波长也不同。定量测定:同一种物质的稀溶液,浓度大的发射的荧光较强。荧光分析法的特点优点:灵敏度高(提高激发光强度,可提高荧光强度),达 ng/ml ;选择性强(比较容易排除其它物质的干扰),重现性好;取样少。缺点:许多物质本身不能发射荧光,因此,应用不够广泛。荧光分析法与UV-Vis 法的比较相
19、同点:都需要吸收紫外-可见光,产生电子能级跃迁。不同点:荧光法测定的是物质经紫外-可见光照射后发射出的荧光的强度(F);UV-Vis 法测定的是物质对紫外-可见光的吸收程度(A) ;荧光法定量测定的灵敏度比UV-Vis 法高。习 题1、名词解释:单重态: 当基态分子的电子都配对时,S = 0,多重性M=1 ,这样的电子能态称为单重态。单重电子激发态:当基态分子的成对电子吸收光能之后,被激发到某一激发态上。如果它的自旋方向不变,S=0,M=1 ,这时的激发态叫单重电子激发态。三重态: 若通过分子内部的一些能量转移,或能阶间的跨越,成对电子中的一个电子自旋方向倒转,使两个电子自旋方向相同而不配对,
20、这时S=1,M=3 ,这种电子激发态称三重电子激发态(三重态)系间跨越:指的是不同多重度状态间的一种无辐射跃迁过程。振动弛豫:内转换:指的是相同多重度等能态间的一种无辐射跃迁过程。量子产率:也称荧光效率或量子效率,其值在01 之间,它表示物质发射荧光的能力。荧光猝灭:指荧光物质分子与溶剂分子或其他溶质分子相互作用引起荧光强度降低或荧光强度与浓度不呈线性关系的现象。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 16 页重原子效应:第 4 章红外吸收光谱法( IR ) P53 根据样品对不同波长红外光的吸收情况,来研究物质分子的组成、结构
21、及含量的方法。IR 与 UV-Vis 的比较相同点:都是分子吸收光谱。不同点: UV-Vis 是基于价电子能级跃迁而产生的电子光谱;主要用于样品的定量测定。 IR 则是分子振动或转动能级跃迁而产生的吸收光谱;主要用于有机化合物的定性分析和结构鉴定。基本概念红外光谱图:是以波数为横坐标,纵坐标用透光率或吸光度来表示的一种频率图。波数( cm-1):波长的倒数,表示每厘米长度上波的数目。红外吸收光谱定性分析的依据根据化合物红外谱图中特征吸收峰的位置、数目、相对强度、 形状等参数来推断样品中存在哪些基团,从而确定其分子结构。4.2 基本原理吸收峰由何引起?每个基团或化学键能产生几个吸收峰?都出现在什
22、么位置?不同吸收峰为什么有强有弱?物质分子产生红外吸收的基本条件(1)分子吸收的辐射能与其能级跃迁所需能量相等;(2)分子发生偶极距的变化(耦合作用)。只有发生偶极矩变化的振动才能产生可观测的红外吸收光谱,称红外活性。4.2.3 多原子分子的振动(P56)分子振动自由度:多原子分子的基本振动数目,也是基频吸收峰的数目。为什么实际测得吸收峰数目远小于理论计算的振动自由度?没有偶极矩变化的振动不产生红外吸收,即非红外活性;相同频率的振动吸收重叠,即简并;仪器分辨率不够高;有些吸收带落在仪器检测范围之外。4.2.5 分子振动频率(基团频率)1. 官能团具有特征频率基团频率: 不同分子中同一类型的基团
23、振动频率非常相近,都在一较窄的频率区间出现吸收谱带,其频率称基团频率。2. 基团频率区和指纹区谱图解析谱图解析 就是根据实验所得的红外光谱图吸收峰的位置、强度和形状; 利用基团振动频率与分子结构的关系;确定吸收峰的归属,确认分子中所含的基团或化学键,进而推断分子的结构。基团频率区( 也称 官能团区): 在 40001300cm-1 范围内的吸收峰,有一共同特点:既每一吸收峰都和一定的官能团相对应,因此称为基团频率区。在基团频率区, 原则上每个吸收峰都可以找到归属。主要基团的红外特征吸收峰(P5963)( 4000 400 cm-1 )19001200cm-1:双键伸缩振动区羰基(C=O): 1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年仪器分析知识点整理 2022 仪器 分析 知识点 整理
限制150内