2022年人教版七年级数学知识点归纳 2.pdf
《2022年人教版七年级数学知识点归纳 2.pdf》由会员分享,可在线阅读,更多相关《2022年人教版七年级数学知识点归纳 2.pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章有理数(一)有理数1、 有理数的分类:按有理数的定义分类:按有理数的性质符号分类:正整数正整数整数零正有理数有理数负整数正分数正分数有理数 0 分数负整数负整数负有理数负分数2、 正数和负数用来表示具有相反意义的数。(二)数轴1、定义:规定了原点、正方向和单位长度的直线叫做数轴。2、数轴的三要素是:原点、正方向、单位长度。(三)相反数1、定义:只有符号不同的两个数互为相反数。2、几何定义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数。3、代数定义:只有符号不同的两个数叫做互为相反数,0的相反数是0。(四)绝对值1、定义:在数轴上表示数a 的点与原点的距离
2、叫做数a 的绝对值 。2、几何定义:一个数 a 的绝对值就是数轴上表示数a 的点与原点的距离。3、代数定义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0 的绝对值是0。 a (a0),即对于任何有理数a, 都有 |a|0( a0)a(a 0) 4、绝对值的计算规律:(1)互为相反数的两个数的绝对值相等. (2)若 |a| |b|,则 a b 或 a b. (3)若 |a|+|b|0,则 |a| 0,且 |b| 0. 相关结论:(1)0 的相反数是它本身。(2)非负数的绝对值是它本身。(3)非正数的绝对值是它的相反数。(4)绝对值最小的数是0。(5)互为相反数的两个数的绝对值相等。
3、(6)任何数的绝对值都是它的正数或0,即 |a| 0。(五)倒数1、定义:乘积为“1”的两个数互为倒数。2、求法:颠倒这个数的分子和分母。 3、 a(a0)的倒数是1a . 有理数的运算一、有理数的加法法则:1、同号两数相加,取相同的符号,并把绝对值相加;2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。3、 一个数同零相加,仍得这个数;4、两个互为相反数的两个数相加得0。二、有理数的减法法则:减去一个数,等于加上这个数的相反数。三、有理数的乘法法则:1、两数相乘,同号得正,异号得负,并把绝对值相乘;2、任何数同0 相乘,都得0;3、乘积是1 的两个数互
4、为倒数。四、有理数的除法法则:1、除以一个不等于0 的数,等于乘以这个数的倒数;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 8 页2、两个有理数相除,同号得正,异号得负,并把绝对值相除。0 除以任何一个不等于0 的数,都得0。五、乘方1、定义:求n 个相同因数的积的运算,叫做乘方。2、幂的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数;负数的偶次幂是正数;0 的任何次正整数次幂都是0。六、 有理数的混合运算顺序:1、先乘方,再乘除,最后加减;2、同级运算,从左到右进行;3、如有括号,先做括号内的运算,按小括号、中括号、大括号依
5、次进行。七、科学计数法、有效数字、近似数1、科学计数法(1)定义: 把一个绝对值大于10 的数表示成 a 10n的形式 (其中 a 是整数数位只有一位的数,即 1|a| 10,n 是正整数 ) ,这种计数方法叫做科学计数法。(2)用科学计数法表示一个n 位整数,其中10 的指数是这个数的整数位数减1。2、有效数字的定义:四舍五入后的近似数,从左边第一个不是0 的数字起,到精确到的数位止,所有的数字,都叫做这个数的有效数字 。3、近似数的定义:一个数与准确数相近( 比准确数略多或者略少些), 这一个数称之为近似数。第二章 整式的加减一、单项式、多项式、整式的概念单项式:由数与字母的乘积组成的代数
6、式叫做单项式 。单独的一个数或一个字母也是单项式。多项式:几个单项式的和叫做多项式 。整式:单项式与多项式统称整式 。二、单项式的系数和次数单项式的系数是指单项式中的数字因数,单项式的次数 是指单项式中所有字母的指数之和。三、多项式的项、常数项、次数在多项式中,每个单项式叫做多项式的项 ,其中不含字母的项叫常数项 ,多项式中次数最高项的次数,就是这个多项式的次数 。四、同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项,所有常数项都是同类项 。五、合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。六、合并同类项步骤:准确的找出同类项。逆用分配律,把同类
7、项的系数加在一起(用小括号),字母和字母的指数不变。写出合并后的结果。七、升幂排列与降幂排列为便于多项式的运算,可以用加法的交换律将多项式各项的位置按某一字母指数大小顺序重新排列。若按某个字母的指数从大到小的顺序排列,叫做这个多项式按这个字母降幂排列 。若按某个字母的指数从小到大的顺序排列,叫做这个多项式按这个字母升幂排列 。八、去括号的法则括号前面是“”号,把括号和它前面的“”号去掉,括号里各项都不变符号;括号前面是“”号,把括号和它前面的“”号去掉,括号里各项都改变符号。九、整式加减的一般步骤是:(1) 如果遇到括号按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。括号
8、里各项都不变符号;括号前是“一”号,把括号和它前面的“一”号去掉括号里各项都改变符号。(2) 合并同类项:同类项的系数相加,所得的结果作为系数字母和字母的指数不变。第三章一元一次方程一、一元一次方程的概念定义 : 方程中只含有一个未知数(元),并且未知数的指数是1(次) ,未知数的式子都是整式,这样的方程叫做一元一次方程。等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 8 页如果 a = b , 那么 ac = b c 等式的性质2:等式两边乘以同一个数,或除以同一个不为0
9、 的数,结果仍相等。如果 a = b ,那么 ac = bc ;如果 a = b (c0),那么ac = bc移项:把方程中的某一项,改变符号后,从方程的左边(右边)移到右边(左边),这种变形叫做移项。二、解一元一次方程的一般步骤:1. 去分母 :在方程两边都乘以各分母的最小公倍数;2. 去括号 :先去小括号,再去中括号,最后去大括号;3. 移项 :把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;4. 合并同类项 :把方程化成ax=b(a 0) 的形式;5. 系数化成1:在方程两边都除以未知数的系数a,得到方程的解x = ba第四章 几何图形初步一、常见的立体图形:柱形、锥体、球体
10、1、柱体中有圆柱 :底面是圆,侧面是曲面;棱柱 :底面是多边形,侧面是长方形;2、锥体中有圆锥 :底面是圆,侧面是曲面;棱锥 :底面是多边形,侧面是三角形;二、几何图形都是由点、线、面、体组成的包围着体的是面,面与面相接的地方是线,线和线相交的地方是点。点动成线,线动成面,面动成体,体、面、线、点都是几何图形。三、直线、射线、线段1、直线(1)概念:向两方无限延伸的的一条笔直的线。如代数中的数轴,就是一条直线(它只规定了原点、方向和长度单位)。(2)基本性质:经过两点有一条直线,并且只有一条直线;也可以简单地说“两点确定一条直线”。(3)特点:直线没有长短,向两方无限延伸;直线没有粗细;两点确
11、定一条直线;两条直线相交有唯一一个交点。2、射线(1)概念:直线上一点和它一旁的部分叫做射线。(2)特点:只有一个端点,向一方无限延伸,无法度量。3、线段(1)概念:直线上两点和它们之间的部分叫做线段。线段有两个端点,有长度。(2)基本性质:两点之间线段最短。(3)特点:有两个端点,不能向任何一方延伸,可以度量,可以较长短。4、线段的中点:把一条线段分成两条相等线段的点。四、角1、角的概念 :有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。2、角度制及换算(1)角度制的概念:以度、分、秒为单位的角的度量制,叫做角度制。(2)角度制的换算: 1=60 1 =
12、601 周角 =360 1 平角 =1801 直角 =90(3)换算方法:把高级单位转化为低级单位要乘进率;把低级单位转化为高级单位要除以进率;转化时必须逐级进行,“越级”转化容易出错。3、角的大小的比较:(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;( 2)度量法。4、角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。5、余角和补角:(1)余角:如果两个角的和等于90(直角),那么这两个角互为余角,其中一个角是另一个角的余角;(2)补角:如果两个角的和等于180(平角),那么这两个角互为补角,其中一个角是另一个角的补角;(3)余角的性
13、质 :等角的余角相等;等角的性质:同角的补角相等。三角形精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 8 页1、三角形定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形 。2、 三角形的分类:三角形按边分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形直角三角形三角形锐角三角形斜三角形钝角三角形3、 三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。4、三角形的高:从三角形的一个顶点向它的对边作垂线,顶点和垂足之间的线段叫做三角形的高。5、三角形的中线:在三角形中,连接一个
14、顶点和它对边的中点的线段叫做三角形的中线。三角形的每一条中线将三角形分成两个面积相等的三角形。6、三角形的角平分线:在三角形中,一个内角的平分线和对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。7、三角形的内角定义:三角形中相邻两边组成的角,叫做三角形的内角。8、三角形内角和定理:三角形三个内角的和等于180。9、三角形的外角定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角 。三角形的外角和为360。10、三角形的 性质: 三角形的一个外角等于与它不相邻的两个内角的和。三角形的一个外角大于与它不相邻的任何一个内角。11、多边形的定义:在平面内,由一些线段首尾顺次相接组成
15、的图形叫做多边形 。12、正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形 。13、多边形的内角和公式:n 边形的内角和等于 ( n 2 ) 18014、三角形外角和定理:三角形的外角和为360。15、平面镶嵌的定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(或平面镶嵌)。16、镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时,就能拼成一个平面图形。第五章相交线与平等线1. 交线的定义:在同一平面内,如果两条直线只有一个公共点,那么这两条直线叫做相交线 。2. 对顶角的定义:一个角的两边分别是另一个角的两边的反向延长线,这两个角
16、叫做对顶角 。3. 对顶角的性质:对顶角相等。4. 邻补角的定义:有公共顶点和一条公共边,并且互补的两个角称为邻补角 。5. 邻补角的性质:邻补角互补。6、垂线的定义:垂直是相交的一种特殊情形,两条直线互相垂直 ,其中的一条直线叫做另一条直线的垂线 ,它们的交点叫做垂足 。7、垂线的性质:性质 1:过一点有且只有一条直线与已知直线垂直。性质 2:垂线段最短 。8、 点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。9、 同位角: 两个角都在两条被截线同侧,并在截线的同旁,这样的一对角叫做同位角。10、 内错角: 两个角都在两条被截线之间,并且在截线的两旁,这样的一对角叫做
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年人教版七年级数学知识点归纳 2022 年人教版 七年 级数 知识点 归纳
限制150内