最新复合材料力学讲义(第二版)简单层板的宏观力学性能幻灯片.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《最新复合材料力学讲义(第二版)简单层板的宏观力学性能幻灯片.ppt》由会员分享,可在线阅读,更多相关《最新复合材料力学讲义(第二版)简单层板的宏观力学性能幻灯片.ppt(128页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Mechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of Technology简单层板的宏简单层板的宏观力学性能观力学性能简单层板的微简单层板的微观力学性能观力学性能简单层板的应简单层板的应力应变关系力应变关系简单层板的强简单层板的强度问题度问题刚度的弹性力刚度的弹性力学分析方法学分析方法刚度的材料力刚度的材料力学分析方法学分析方法强度的材料力强度的材料力学分析方法学分析方法简单层板的宏简单层板的宏观力学性能观力学性能Me
2、chanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of TechnologyCenter for Composite Materials, Harbin Institute of TechnologyMechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute o
3、f TechnologyMechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of TechnologyMechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of TechnologyMechanics of Mechanics of coMposite
4、MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of TechnologyMechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of TechnologyMechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite
5、 Materials, Harbin Institute of TechnologyMechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of TechnologyMechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of TechnologyMechan
6、ics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of TechnologyMechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of TechnologyMechanics of Mechanics of coMposite MaterialscoMposite
7、 MaterialsCenter for Composite Materials, Harbin Institute of TechnologyMechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of TechnologyMechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin
8、 Institute of Technology 1221662221121112210000Q QQ QQ QQ QQ Q 1221662221121112210000S SS SS SS SS S x xy yy yx xx xy yy yx xQ QQ QQ QQ QQ QQ QQ QQ QQ Q662616262221161211 kkkQ 第第k k层的应力层的应力- -应变关系应变关系Mechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harb
9、in Institute of Technology0 z 0, 0 zyzx Mechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of TechnologyMechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of Technologyx,uy,vz,
10、w变形前的横截面变形前的横截面变形后的横截面变形后的横截面XZXZ平面内的变形几何平面内的变形几何z zx xz zc cA AB BC CD Du u0 0 ww0 0 A AB BC CD Dz zc c Mechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of TechnologyB B:中面上一点:中面上一点C C:任意点:任意点 c cC Cz zu uu u0 是层合板中面在是层合板中面在X X方向上的斜率方向
11、上的斜率x xww 0层合板厚度上任意一点层合板厚度上任意一点z z的位移的位移u u为:为:x xwwz zu uu u 00同样,在同样,在yzyz平面内,平面内,y y方向上的位移方向上的位移v v为:为:y ywwz zv vv v 00z zx xz zc cA AB BC CD Du u0 0 ww0 0 A AB BC CD Dz zc c Mechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of Techn
12、ology板内任一点的位移分量可表示为:板内任一点的位移分量可表示为:) )z z, ,y y, ,x x( (wwww) )z z, ,y y, ,x x( (v vv v) )z z, ,y y, ,x x( (u uu u 由直法线不变假设,得由直法线不变假设,得00 z zy yz zx xz zy ywwz zv vv vx xwwz zu uu u) )y y, ,x x( (wwww 00000Mechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials
13、, Harbin Institute of TechnologyUndeformedUndeformedClassical plate theoryClassical plate theoryFirst-order plate theoryFirst-order plate theoryThird-order plate theoryThird-order plate theoryMechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Insti
14、tute of TechnologyClassical plate theoryClassical plate theoryFirst-order plate theoryFirst-order plate theoryThird-order plate theoryThird-order plate theoryMechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of TechnologyClassical plate
15、theoryClassical plate theoryy ywwz zv vv vx xwwz zu uu u) )y y, ,x x( (wwww 00000Mechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of Technology2020 x xwwz zx xu ux xu ux x 2020y ywwz zy yv vy yv vy y y yx xwwz zx xv vy yu ux xv vy yu ux
16、 xy y 02002 k k z z 0应变由位移确定如下应变由位移确定如下: :若用矩阵形式表示若用矩阵形式表示 x xv vy yu uy yv vx xu u 00000 y yx xwwy ywwx xww k k 222222Mechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of Technology) )x xww( (k kx x22 ) )y yww( (k ky y22 ) )y yx xww( (k
17、 kxyxy 22T T) )x xv vy yu u( ( , ,y yv v, ,x xu u 00000T T y yx xww, ,y yww, ,x xww k k 222222Mechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of Technologyy ywwz zv vx xwwz zu uz zwwz zy yz zx xz z 0y yx xz zv vv vz zu uu u) )y y, ,x x
18、( (wwww 000 x xz zx xu ux xu ux xx x 0y yz zy yv vy yv vy yy y 0) )x xy y( (z zx xv vy yu ux xv vy yu uy yx xx xy y 00 ) )x xy y( (y yx x k k y yx xy yx xMechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of Technology k k z z 0 k kk kk k
19、Q Q x xy yy yx xx xy yy yx xx xy yy yx xk kk kk kz zQ QQ QQ QQ QQ QQ QQ QQ QQ Q000662616262221161211Mechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of TechnologyLaminateStraindistributionStressdistributionMechanics of Mechanics of coMp
20、osite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of TechnologyMechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of TechnologyMechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Com
21、posite Materials, Harbin Institute of Technology定义作用在单位宽度上层合板的平均内力定义作用在单位宽度上层合板的平均内力 N Ni i 和内力矩和内力矩MMi i为为 2h2hiidzN/ 22/ /h h/ /h hi ii iz zd dz zMM(i=xi=x,y y,xyxy)xyzNyxNyNxyNxxyz层合平板的力矩层合平板的力矩MyMyxMxyMxMechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Material
22、s, Harbin Institute of TechnologyMechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of Technology N1kzzkxyyx2t2txyyxxyyxdzdzNNNk1k/ N Nk kz zz zk kx xy yy yx x/ /t t/ /t tx xy yy yx xx xy yy yx xd dz zz zz zd dz zMMMMMMk kk k1221N N层层合板上作
23、用的全部合力和力矩为:层层合板上作用的全部合力和力矩为: 2t2tiidzN/ 2t2tiizdzM/Mechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for Composite Materials, Harbin Institute of Technology k kk kk kk kz zz zx xy yy yx xz zz zx xy yy yx xN Nk kk kx xy yy yx xz zd dz zk kk kk kd dz zQ QQ QQ QQ QQ QQ QQ QQ QQ QN
24、NN NN N110001662616262221161211 k kk kk kk kz zz zx xy yy yx xz zz zx xy yy yx xN Nk kk kx xy yy yx xd dz zz zk kk kk kz zd dz zQ QQ QQ QQ QQ QQ QQ QQ QQ QMMMMMM1120001662616262221161211不是不是z z的函数而是中面值可以从的函数而是中面值可以从积分中提出积分中提出Mechanics of Mechanics of coMposite MaterialscoMposite MaterialsCenter for
25、Composite Materials, Harbin Institute of Technology x xy yy yx xx xy yy yx xx xy yy yx xk kk kk kB BB BB BB BB BB BB BB BB BA AA AA AA AA AA AA AA AA AN NN NN N662616262221161211000662616262221161211 k kk kk kk kz zz zx xy yy yx xz zz zx xy yy yx xN Nk kk kx xy yy yx xz zd dz zk kk kk kd dz zQ QQ QQ
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 复合材料 力学 讲义 第二 简单 宏观 力学性能 幻灯片
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内