2022年初中数学总复习教案2 .pdf
《2022年初中数学总复习教案2 .pdf》由会员分享,可在线阅读,更多相关《2022年初中数学总复习教案2 .pdf(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 初中数学总复习教案第 1 课时实数的有关概念知识点 :有理数、无理数、实数、非负数、相反数、倒数、数的绝对值教学目标:1 使学生复习巩固有理数、实数的有关概念2 了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。3 会求一个数的相反数和绝对值,会比较实数的大小4 画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。教学重难点:1 有理数、无理数、实数、非负数概念;2相反数、倒数、数的绝对值概念;3在已知中,以非负数a2、|a| 、a (a 0) 之和为零作为条件,解决有关问题。教学过程:一、基础回顾1、实数的有关概
2、念 (1)实数的组成正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数 (2)数轴: 规定了原点、 正方向和单位长度的直线叫做数轴( 画数轴时, 要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。数轴上任一点对应的数总大于这个点左边的点对应的数, (3)相反数实数的相反数是一对数( 只有符号不同的两个数,叫做互为相反数,零的相反效是零) 从数轴上看,互为相反数的两个数所对应的点关于原点对称 (4)绝对值)0()0(0)0(|aaaaaa从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 (5)倒数精选学习资料 - -
3、- - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 33 页2 实数 a(a 0) 的倒数是a1( 乘积为 1 的两个数,叫做互为倒数) ;零没有倒数二: 【经典考题剖析】 1 在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所已知青少年宫在学校东300m处,商场在学校西200m处,医院在学校东500m处若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1 个单位长度表示100m ( 1)在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离:解: (1)如图所示:(2)300( 200)=500(m ) ;或 | 2
4、00300 |=500 (m ) ;或 300+|200|=500(m ) 答:青少宫与商场之间的距离是 500m。2下列各数中:-1,0,169,2,1.1010016 .0,12,45cos,-60cos, 722,2,722. 有理数集合 ;正数集合 ;整数集合 ;自然数集合 ;分数集合 ;无理数集合 ;绝对值最小的数的集合 ;3. 已知 (x-2)2+|y-4|+6z=0,求 xyz 的值解: 48 点拨:一个数的偶数次方、绝对值,非负数的算术平方根均为非负数,若几个非负数的和为零,则这几个非负数均为零4已知 a 与 b 互为相反数, c、d 互为倒数, m的绝对值是2 求32122(
5、)2()mmabcdm的值5. a 、b 在数轴上的位置如图所示,且ab,化简aabba三: 【训练】 见中考大决战. 四: 教学反思:0ba精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 33 页3 第 2 课时实数的运算知识点:有理数的运算种类、各种运算法则、运算律、运算顺序、科学计数法、近似数与有效数字、计算器功能鍵及应用。教学目标:1了解有理数的加、减、乘、除的意义,理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。2了解有理数的运算率和运算法则在实数运算中同样
6、适用,复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。3了解近似数和准确数的概念,会根据指定的正确度或有效数字的个数,用四舍五入法求有理数的近似值 (在解决某些实际问题时也能用进一法和去尾法取近似值),会按所要求的精确度运用近似的有限小数代替无理数进行实数的近似运算。4了解电子计算器使用基本过程。会用电子计算器进行四则运算。教学重难点:1考查近似数、有效数字、科学计算法;2考查实数的运算;3计算器的使用。教学过程:一、知识回顾:实数的运算 (1)加法同号两数相加,取原来的符号,并把绝对值相加;异号两数相加。取绝对值较大的数的符号,并用较大的绝对值减去较
7、小的绝对值;任何数与零相加等于原数。 (2)减法 a-b=a+(-b) (3)乘法两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零即)(0),(|),(|为零或异号同号bababababaab(4) 除法)0(1bbaba(5) 乘方个nnaaaa(6) 开方如果 x2a且 x0,那么ax; 如果 x3=a,那么xa3在同一个式于里,先乘方、开方,然后乘、除,最后加、减有括号时,先算括号里面(7) 实数的运算律 (1)加法交换律 a+bb+a (2)加法结合律 (a+b)+c=a+(b+c) (3)乘法交换律 ab ba (4)乘法结合律 (ab)c=a(bc) 精选学习资料
8、- - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 33 页4 (5)分配律 a(b+c)=ab+ac 其中 a、 b、c 表示任意实数运用运算律有时可使运算简便二: 【经典考题剖析】1. 已知 x、y 是实数,234690,3,.xyyaxyxya若求实数的值2. 请在下列6 个实数中 , 计算有理数的和与无理数的积的差:24014 , 2 ,27,(1)233. 比较大小 :(1)3 52 11,(2)155137,(3)103与与与3-224. 探索规律 :31=3,个位数字是3;32=9,个位数字是9;33=27,个位数字是7;34=81,个位数
9、字是1; 35=243,个位数字是3; 36=729,个位数字是9;那么37的个位数字是;320的个位数字是;5. 计算:(1)342221( 2)( 1)( 12)( )20.25413( 2); (2)1002211( )(2001tan30 )( 2)31621三: 【训练】见中考大决战. 四、教学反思:第 2 课时整式知识点代数式、代数式的值、整式、同类项、合并同类项、去括号与去括号法则、幂的运算法则、整式的加减乘除乘方运算法则、乘法公式、正整数指数幂、零指数幂、负整数指数幂。教学目标:1、 了解代数式的概念,会列简单的代数式。理解代数式的值的概念,能正确地求出代数式的值;2、 理解整
10、式、单项式、多项式的概念,会把多项式按字母的降幂(或升幂)排列,理解同类项的概念,会合并同类项;3、 掌握同底数幂的乘法和除法、幂的乘方和积的乘方运算法则,并能熟练地进行数字指数幂的运算;4、 能熟练地运用乘法公式(平方差公式,完全平方公式及(x+a)(x+b)=x2+(a+b)x+ab )进行运算;5、 掌握整式的加减乘除乘方运算,会进行整式的加减乘除乘方的简单混合运算。重难点: 掌握整式的加减乘除乘方运算,会进行整式的加减乘除乘方的简单混合运算。能正确地求出代数式的值一、基础回顾:1代数式的有关概念精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第
11、 4 页,共 33 页5 (1)代数式:代数式是由运算符号( 加、减、乘、除、乘方、开方) 把数或表示数的字母连结而成的式子单独的一个数或者一个字母也是代数式 (2)代数式的值;用数值代替代数式里的字母,计算后所得的结果p 叫做代数式的值求代数式的值可以直接代入、计算如果给出的代数式可以化简,要先化简再求值(3) 代数式的分类2整式的有关概念 (1)单项式:只含有数与字母的积的代数式叫做单项式对于给出的单项式,要注意分析它的系数是什么,含有哪些字母, 各个字母的指数分别是什么。 (2)多项式:几个单项式的和,叫做多项式对于给出的多项式,要注意分析它是几次几项式,各项是什么, 对各项再像分析单项
12、式那样来分析(3) 多项式的降幂排列与升幂排列把一个多项式技某一个字母的指数从大列小的顺序排列起来,叫做把这个多项式按这个字母降幂排列把个多项式按某一个字母的指数从小到大的顺斤排列起来,叫做把这个多项式技这个字母升幂排列,给出一个多项式,要会根据要求对它进行降幂排列或升幂排列 (4)同类项所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷要会判断给出的项是否同类项,知道同类项可以合并即xbabxax)(其中的 X可以代表单项式中的字母部分,代表其他式子。 3整式的运算 (1)整式的加减: 几个整式相加减, 通常用括号把每一个整式括起来,再用加减号连接 整式加减的一般步骤是: (i)如果
13、遇到括号 按去括号法则先去括号:括号前是 “十” 号,把括号和它前面的“ +”号去掉。括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉括号里各项都改变符号 (ii)合并同类项:同类项的系数相加,所得的结果作为系数字母和字母的指数不变 (2)整式的乘除:单项式相乘( 除) ,把它们的系数、相同字母分别相乘( 除) ,对于只在一个单项式 ( 被除式 ) 里含有的字母,则连同它的指数作为积( 商) 的一个因式相同字母相乘( 除) 要用到同底数幂的运算性质:),0(),(是整数是整数nmaaaanmaaanmnmnmnm多项式乘 ( 除) 以单项式, 先把这个多项式的每一项乘( 除
14、) 以这个单项式, 再把所得的积( 商) 相加多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加遇到特殊形式的多项式乘法,还可以直接算:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 33 页6 .)(,2)(,)(,)()(332222222babababababababababaabxbaxbxax (3)整式的乘方单项式乘方, 把系数乘方, 作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式。单项式的乘方要用到幂的乘方性质与积的乘方性质:)()(),()(是整数是整数nbaa
15、bnmaannnmnnm多项式的乘方只涉及.222)(,2)(2222222cabcabcbacbabababa1、 考查重难点与常见题型(1)考查列代数式的能力。题型多为选择题,如:下列各题中,所列代数错误的是()(A)表示“比a 与 b 的积的 2倍小 5 的数”的代数式是2ab5 (B)表示“ a 与 b 的平方差的倒数”的代数式是1a b2(C)表示“被5 除商是 a,余数是2 的数”的代数式是5a+2 (D)表示“数的一半与数的3倍的差”的代数式是a23b (2)考查整数指数幂的运算、零指数。题型多为选择题,在实数运算中也有出现,如:下列各式中,正确的是()(A)a3+a3=a6 (
16、B)(3a3)2=6a6 (C)a3?a3=a6 (D)(a3)2=a6整式的运算,题型多样,常见的填空、选择、化简等都有。二: 【经典考题剖析】1. 判别下列各式哪些是代数式,哪些不是代数式。(1)a2-ab+b2; (2)S=12(a+b)h; (3)2a+3b0; (4)y; (5)0; (6)c=2R。2. 抗“非典”期间,个别商贩将原来每桶价格a 元的过氧乙酸消毒液提价20后出售,市政 府 及 时 采 取 措 施 , 使 每 桶 的 价 格 在 涨 价 一 下 降15 , 那 么 现 在 每 桶 的 价 格 是_元。3. 一根绳子弯曲成如图所示的形状,当用剪刀像图那样沿虚线把绳子剪断
17、时,绳子被剪成 5 段;当用剪刀像图那样沿虚线b( ba)把绳子再剪一次时,绳子就被剪成9 段,若用剪刀在虚线ab 之间把绳子再剪(n-2) 次( 剪刀的方向与a 平行)这样一共剪n 次时绳子的段数是()a a b 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 33 页7 A.4n+1 B.4n+2 C.4n+3 D.4n+5 4. 有这样一道题, “当 a= 0.35 ,b=-0.28 时,求代数式 7a26a3b+3a36a3b3a2b10a3+3 a2b2 的值”小明同学说题目中给出的条件a=0.35 , b=-0.28 是多余
18、的,你觉得他的说法对吗?试说明理由 5.计算: 7a2b+3ab2 4a2b-(2ab2-3ab)-4ab-(11ab2b-31ab 6ab26 已知: A=2x2+3ax2x1, B= x2+ax1,且 3A+6B的值与 x 无关,求a 的值5. 阅读材料并解答问题:我们已经知道, 完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如:(2a b)(a+b)=2a2 3ab+ b2就可以用图l l l 或图 l l 2 等图形的面积表示( 1)请写出图l 1 3 所表示的代数恒等式:( 2)试画出一个几何图形,使它的面积能表示:(a+b) (a+3b
19、) a2 4ab 十 3b2( 3)请仿照上述方法另写一下个含有a、b 的代数恒等式,并画出与之对应的几何图形三、训练:见中考大决战. 四、教学反思:第 3 课时因式分解知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。教学目标:理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。考查重难点与常见题型:考查因式分解能力, 在中考试题中, 因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、 分组分解法及它们的综合运用。习题类型以填空
20、题为多,也有选择题和解答题。教学过程:一、基础回顾: 1、因式分解知识点多项式的因式分解,就是把一个多项式化为几个整式的积分解因式要进行到每一个因式都不能再分解为止分解因式的常用方法有: (1)提公因式法精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 33 页8 如多项式),(cbamcmbmam其中 m叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式 (2)运用公式法,即用)(,)(2),)(223322222babababababababababa写出结果 (3)十字相乘法对于二次项系数为l 的二次三项式,2
21、qpxx寻找满足ab=q,a+b=p 的 a, b,如有,则);)(2bxaxqpxx对于一般的二次三项式),0(2acbxax寻找满足a1a2=a,c1c2=c,a1c2+a2c1=b的 a1,a2,c1,c2,如有,则).)(22112cxacxacbxax(4) 分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行分组时要用到添括号:括号前面是 “+”号,括到括号里的各项都不变符号;括号前面是 “ - ”号,括到括号里的各项都改变符号. (5) 求根公式法:如果),0(02acbxax有两个根X1,X2,那么).)(212xxxxacbxax二: 【经典考题剖析
22、】 1. 分解因式:(1)33x yxy; (2)3231827xxx; (3)211xx; (4)2342xyyx分析:因式分解时,无论有几项,首先考虑提取公因式。提公因式时,不仅注意数,也要注意字母,字母可能是单项式也可能是多项式,一次提尽。当某项完全提出后,该项应为“1”注意22nnabba,2121nnabba分解结果( 1)不带中括号; (2)数字因数在前,字母因数在后;单项式在前,多项式在后; (3)相同因式写成幂的形式;(4)分解结果应在指定范围内不能分解为止;若无指定范围,一般在有理数范围内分解。2. 分解因式:(1)22310 xxyy; (2)32232212x yx yx
23、y; (3)222416xx分析:对于二次三项齐次式,将其中一个字母看作“末知数”,另一个字母视为“常数” 。首先考虑提公因式后,由余下因式的项数为3 项,可考虑完全平方式或十字相乘法继续分解;如果项数为2,可考虑平方差、立方差、立方和公式。(3)题无公因式,项数为2 项,可考虑平方差公式先分解开,再由项数考虑选择方法继续分解。3. 计算:(1)22221011911311211(2)22222221219981999200020012002精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 33 页9 分析: (1)此题先分解因式后约分,
24、则余下首尾两数。(2)分解后,便有规可循,再求1 到 2002 的和。4. 分解因式:(1)22244zyxyx; (2)babaa2322分析:对于四项或四项以上的多项式的因式分解,一般采用分组分解法,5. (1)在实数范围内分解因式:44x;(2)已知a、b、c是 ABC的三边,且满足222abcabbcac,求证: ABC为等边三角形。分析:此题给出的是三边之间的关系,而要证等边三角形,则须考虑证abc,从已知给出的等式结构看出,应构造出三个完全平方式2220abbcca,即可得证,将原式两边同乘以2即可。略证:2220abcabbcac0222222222acbcabcba0222ac
25、cbbacba;即 ABC为等边三角形。三、训练:见中考大决战. 四、教学反思:第 4 课时分式知识点 : 分式,分式的基本性质,最简分式,分式的运算,零指数,负整数,整数,整数指数幂的运算教学目标 : 了解分式的概念,会确定使分式有意义的分式中字母的取值范围。掌握分式的基本性质,会约分,通分。会进行简单的分式的加减乘除乘方的运算。掌握指数指数幂的运算。考查重难点与常见题型: (1)考查整数指数幂的运算,零运算,有关习题经常出现在选择题中,如:下列运算正确的是()(A)-40 =1 (B) (-2)-1= 12 (C) (-3m-n)2=9m-n (D)(a+b)-1=a-1+b-1 (2)考
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年初中数学总复习教案2 2022 年初 数学 复习 教案
限制150内