2022年计量经济学第三版复习知识要点庞皓 .pdf





《2022年计量经济学第三版复习知识要点庞皓 .pdf》由会员分享,可在线阅读,更多相关《2022年计量经济学第三版复习知识要点庞皓 .pdf(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章导论第一节计量经济学的涵义和性质计量经济学是以一定的经济理论和实际统计资料为依据,运用数学、 统计学方法和计算机技师, 通过建立计量经济模型, 定量分析经济变量之间的随机因果关系。计量经济学是经济学的一个重要分支,以揭示经济活动中客观存在的数量关系的理论与方法为主要内容,其核心是建立计量经济学模型。第二节 计量经济学的内容体系及与其他学科的关系一、计量经济学与经济学、统计学、数理统计学学科间的关系计量经济学是经济理论、 统计学和数学的综合。 经济学着重经济现象的定性研究,而计量经济学着重于定量方面的研究。统计学是关于如何惧、 整理和分析数据的科学,而计量经济学则利用经济统计所提供的数据来
2、估计经济变量之间的数量关系并加以验证。 数量统计各种数据的惧、 整理与分析提供切实可靠的数学方法,是计量经济学建立计量经济模型的主要工具,但它与经济理论、 经济统计学结合而形成的计量经济学则仅限于经济领域。计量经济模型建立的过程, 是综合应用理论、 统计和数学方法的过程。 因此计量经济学是经济理论、统计学和数学三者的统一。二、计量经济学的内容体系1、按范围分为广义计量经济学和狭义计量经济学。2、按研究内容分为理论计量经济学和应用计量经济学。理论计量经济学的核心内容是参数估计和模型检验。应用计量经济学的核心内容是模型设定和模型应用。第三节基本概念 (4、5、7、8 了解即可 ) 1.经济变量:经
3、济变量是用来描述经济因素数量水平的指标。2.解释变量:解释变量也称自变量,是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。它对因变量的变动作出解释,表现为议程所描述的因果关系中的“因” 。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 30 页3.被解释变量:被解释变量也称因变量或应变量,是作为研究对象的变量。它的变动是由解释变量作出解释的,表现为议程所描述的因果关系的果。4.内生变量:内生变量是由模型系统内部因素所决定的变量,表现为具有一定概率颁的随机变量,其数值受模型中其他变量的影响,是模型求解的结果。5.外生变
4、量:外生变量是由模型统计之外的因素决定的变量,不受模型内部因素的影响, 表现为非随机变量, 但影响模型中的内生变量, 其数值在模型求解之前就已经确定。6.滞后变量:滞后变量是滞后内生变量和滞后外生变量的合称,前期的内生变量称为滞后内生变量;前期的外生变量称为滞后外生变量。7.前定变量:通常将外生变量和滞后变量合称为前定变量,即是在模型求解以前已经确定或需要确定的变量。8.控制变量:控制变量是为满足描绘和深入研究经济活动的需要,在计量经济模型中人为设置的反映政策要求、决策者意愿、 经济系统运行条件和状态等方面的变量,它一般属于外生变量。9.计量经济模型: 计量经济模型是为了研究分析某个系统中经济
5、变量之间的数量关系而采用的随机代数模型, 是以数学形式对客观经济现象所作的描述和概括。第四节计量经济学的研究步骤一、建立理论模型。建立计量经济学模型的第一步,包括了选择变量,确定变量间的数学关系,以及确定统计指标并收集整理数据。二、模型参数的估计。 是理论计量经济学模型的一个核心内容,涉及对模型的识别、估计方法的选择等多个方面。模型特性不同, 所采用的估计参数方法就有所不同。若满足古典假定,可以采用普通最小二乘法(OLS)等方法;若模型中存在异方差性,可以选用加权最小二乘法(WLS)等方法;若模型中存在自相关性,可以选用广义差分法、广义最小二乘法(GLS)等方法;若模型中存在多重共线性,可以选
6、用逐步回归法、主成分回归法等方法。三、模型的检验。 (1)经济意义检验。根据一定的经济理论或人们的经济实践经验判断所估计出的参数的的符号和数值是否合理。(2)统计检验。 利用数理精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 30 页统计方法, 依据统计推断原理, 对参数估计的可靠程度、 观察数据的拟合程度等进行检验,主要包括:拟合优度检验、方程的显著性检验和变量的显著性检验。(3)计量经济学检验。统计显著性检验是在一定的假设条件下进行的,若假设条件被违背,统计显著性检验则失效, 因此还必须对这些假设是否成立进行检验,当假设成立时, 上
7、述统计检验结果才是有效的。对于单方程计量经济模型, 计量经济学检验主要包括异方差检验、自相关检验和多重共线性检验。 对于联立计量经济学模型,计量经济学检验还包括模型的识别性检验。(4)模型预测检验。统计显著性检验和计量经济学检验是利用样本期内的数据进行检验的,预测性检验是利用样本期外的数据检验模型参数估计量的稳定性以及模型对样本期以外经济客观事实的近似描述能力。 预测性检验只是在建模的目的主要用于经济预测时才进行。四、计量经济学模型的应用。主要涉及四个方面:结构分析、经济预测、政策评价,以及检验与发展经济理论。 结构分析就是对经济现象中变量间关系的研究;经济预测包括短期预测与中长期预测;政策评
8、价主要指研究不同的政策对经济运行的影响, 并从中选择相对适当的政策的一种模拟性试验;检验与发展经济理论则是通过实际数据考察理论的适用性并发展新的适用的经济学理论。第二章简单线性回归模型第一节古典回归模型一、相关分析和回归分析的区别(了解)1. 变量性质 : 相关分析中都是随机变量且关系对等回归分析自变量与因变量的关系不对等的,自变量是确定性变量,而因变量是随机变量。;2分析方法:相关分析通过图表法和相关系数;回归分析通过建立回归方程。3. 分析目的:相关分析是判定变量之间相关的方向和关系的密切程度;回归分析是分析变量之间的数量依存关系, 并根据自变量的数值变化去推测因变量数值变化。二、回归模型
9、1、总体回归模型。iiibxaxfyE)()(。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 30 页回归分析的主要任务就是设法求出总体回归参数的具体数值,进而利用总体回归方程描述和分析总体的平均变化规律。2、样本回归模型。iixbay?。回归分析的主要内容可以概括成:(1) 根据样本观察值确定样本回归方程;(2) 检验样本回归方程对总体回归方程的近似程度;(3) 利用样本回归方程分析总体的平均变化规律。三、回归模型的随机设定1随机误差项。在iiixbby10中,i表示其他多种因素的综合影响,称为随机扰动项、随机项或误差项。它是一个随
10、机变量,其值是不可观测的,可正可负。2随机误差产生的原因: 宏观现象本身的随机性。 模型本身的局限性。模型函数形式的设定误差。数据的测量与归并误差。随机因素的影响 (如自然灾害等)。四、古典回归模型的基本假定利用样本数据估计回归模型中的参数时,通常需要对模型的随机误差项和解释变量的特性事先做些假定。回归模型的基本假定有:1零均值假定:0)(iE, 即随机误差项的平均值为零。2同方差假定:2)(iD(常数) 。这一假定表明,各随机误差项的离散程度(或波动幅度)是相同的。3非自相关假定:0),cov(ji,),2, 1,(njiji。4解释变量与随机误差项不相关假定:0),cov(iix,ni,2
11、, 1。5. 正态性假定。即 uiN(0,2i)。6无多重共线性假定。即解释变量之间不存在完全的线性关系,这样才能分析每个解释变量各自对iy的影响。第二节一元线性回归模型的参数估计精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 30 页设给定的一元线性回归模型ixbbyi10, 假定10?,?bb分别为参数10,bb的估计量,则有样本回归方程iixbby10?。根据最小二乘原理,参数估计值10?,?bb应使残差平方和MinxbbyyyebbQiiiii210221,0)?()?()?(根据微分学中的极值原理,Q要达到最小,必须使上式对1
12、0?,?bb的一阶偏导数为零。解方程组得:221)(?iiiiiixxnyxyxnbxbyxbynbii110?)?(1?由于10?,?bb是根据最小二乘法得到的,故称10?,?bb为回归参数10,bb的最小二乘估计量,简记成OLS估计量。四、最小二乘估计的性质1、参数估计量的评价标准(1)无偏性:设?是参数 的估计量,如果 E(?)= ,则称?是的无偏估计。无偏性保证了参数估计值是在参数真实值(简称参数真值) 的左右波动,并且“平均位置”就是参数的真值。(2)有效性(最小方差性) :设?,*?均为参数的无偏估计量,若D(?)D(*?) ,则称?比*?有效;如果在 的所有无偏估计量中, D(?
13、) 最小,则称?为有效估计量。有效性衡量了参数估计值与参数真值平均离散程度大小。(3)一致性:这是估计量的一个大样本性质,如果随着样本容量的增加,估计量?越来越接近于真值, 则称?为的一致估计。 严格地说,?是依概率收敛于, 即:1)?(lim Pn。其中 为一个任意小的正数。 2 、高斯马尔可夫定理在古典回归模型的若干假定成立的情况下,最小二乘估计是所有线性无偏估计量中的有效估计量。 这就是著名的高斯马尔可夫定理,它表明:最小二乘估精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 30 页计与用其它方法得到的任何线性无偏估计量相比,具有
14、方差最小的特性。 所以称OLS估计为“最佳线性无偏估计量”(Best Linear Unbiased EstimatorBLUE ) ,这也是最小二乘估计被广泛使用的原因之一。3.OLS估计的几个重要性质(1)剩余项ie的均值为零。(2)OLS回归线通过样本均值点(x,y) 。(3)估计值iy ?的均值等于实际观测iy的均值y。(4)被解释变量估计值iy ?与剩余项ie不相关,即 cov(iy ?,ie)=0。(5)解释变量ix与剩余项ie不相关,即 cov(ix,ie)=0。五、回归模型的置信区间1、OLS估计的概率分布0?b ,1?b分别是y的线性组合函数,故0?b ,1?b的概率分布取决
15、于y。而y是正态分布的,正态随机变量的线性组合仍服从正态分布,其分布密度由其均值和方差唯一决定。)/,(?211xxLbNb;)/,(?2200 xxnLxbNb2、参数的估计误差参数的估计误差即估计值ib?与真值ib的偏差。由于ib?是一个随机变量, 故误差大小也是一个随机变量, 因此考虑概率意义下的平均误差。参数估计量的平均误差为:xxLbDbbE/)?()?(21211由于随机误差项i的方差2通常是未知的,在实际计算中2用其无偏估计量)2/(?22nei代替。系数的标准差为:xxixxLneLbs)2(?)?(221;xxiiLnnxebs)2()()?(2203、参数的置信区间在1的置
16、信水平下1b的置信区间为:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 30 页)?(?),?(?12/112/1bstbbstb, 即以 1的概率保证回归系数位于该区间。一般地,置信水平越高,可靠性越高;置信区间越小,回归系数的估计精度就越高。第三节一元线性回归模型的统计检验一、拟合优度 (增加 36,74 页)拟合优度是指样本回归模型对样本观测值的拟合程度,通常用2R 表示。总离差分解公式222)?()(iiieyyyy中样本回归平方和ESS在总变差 TSS中所占的比重称为判定系数(或可决系数),用2R 表示。TSSRSSTSSE
17、SSR12,其中, ESS=2)?(yyi,TSS=2)(yyi,RSS=2ie102R,是一个非负数。2R的经济含义是:它定量地描述了Y 的变化中可以用回归模型来说明的部分。二、回归系数的显著性检验(t 检验)最常用的解释变量的显著性检验方法为t 检验。主要检验步骤为:1、提出原假设0:10bH,即假设解释变量x对y无显著影响。2、构造 t 统计量。由b?的概率分布并将其标准化可得一检验统计量:)2()?(?111ntbSbbt3)作出判断。给定显著性水平,查自由度为2n的t 分布表,得临界值)2(2nt。若)2(2ntt,则拒绝原假设0H,认为1b显著地不为零,解释变量x对y有显著影响,x
18、可保留在模型中; 若)2(2ntt,则接受原假设0H,认为x对y无显著影响,此时可考虑剔除该解释变量。三、t 检验的 p 值检验在 EViews 软件输出的回归分析结果中,在每个t 统计量的值it的右端还列精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 30 页出了一个概率值p (或 p 值) ,它表明得到一个大于或等于从样本得到的t 统计量的值的准确概率值(或一个原假设可被拒绝的最低显著水平),其表达式为:pttPi)(这样,若将固定在某一水平上,并在p 值小于时,则拒绝原假设,认为该变量的影响是显著的,即若p时,则拒绝原假设。因此,
19、专业上又将p值定义为一个原假设可被拒绝的最低显著水平。第三章多元线性回归模型及非线性回归模型第一节 多元线性回归模型一、多元线性回归模型的OLS 估计对于多元线性回归模型ikikiiixxxy22110, 利用 OLS 法, 有:22211022)?(min)?min(minkikiiiiixbxbxbbyyye,分别求关于模型参数的一阶偏导数,并令其等于零,经过化简整理得到正规方程组。正规方程组可用矩阵表示为:BXXYX?)(,得到参数的最小二乘估计为YXXXB1)(?。二、多元线性回归模型参数估计量的性质在多元线性回归模型满足基本假设的前提下,其参数的OLS 估计和最大似然估计具有无偏性和
20、有效性。 同时,在小样本下参数估计量不完全具有无偏性和有效性,但随着样本容量的增加, 参数估计具有渐近无偏性和渐近有效性,也即具有一致性。三、F 检验(整体显著性检验)对于多元线性回归模型nixbxbxbbyikikiii,2, 122110若要检验模型中的被解释变量iy与所有的解释变量kiiixxx,21之间的整体线性关系在总体上是否显著成立,即是检验参数kbbb,21是否显著地不为零。1)根据假设检验的原理,先提出原假设精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 30 页0:210kbbbH即模型的线性关系不成立 (若0H成立,
21、则多元回归模型变为iiby0,这表明iy的变化主要由模型之外的变量来决定,不受解释变量kiiixxx,21的影响,所设定的模型无意义)2) F 统计量总离差的分解式:222)?()(iiieyyyy在通过分析可知,回归平方差越大,残差平方和越小,回归直线与样本点拟合程度越高,而我们要检验总体的线性是否显著,先看一下22)?(iieyy的比值,如果其比值越大, 则解释变量 X 对被解释变量 Y 的解释程度越高, 可推测总体显著线性,反之,则不显著。根据数理统计学的证明,2)?(yyi、2ie分别服从各自自由度的2分布,即2)?(yyik22ie12kn因此,在原假设0H成立的条件下,根据数理统计
22、学中的定义,可以证明我们构造的统计量服从F 分布,即)1,()1/(/)?(22knkFknekyyFii(2.27)3)作出判断给定一个显著水平,查 F 分布表得临界值)1,(knkF;根据样本数据计算 F 统计量的数值。若FF,小概率事件发生,则拒绝原假设0H,可以认为回归系数kbbb,21中至少有一个显著地不为零,模型的线性关系显著。拟合优度检验与模型显著性检验的关系拟合优度检验与模型显著性检验是从不同的原理出发的两类检验,前者是检验模型对样本观测值的拟合程度,后者是检验模型的总体线性关系。但二者又是有关系的。由下式2211/1)1/(/RRkknTSSRSSTSSESSkknknRSS
23、kESSF精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 30 页得知,2R值越大,F值也越大。因此,当2R值较大时,模型对样本观测值的拟合程度较高,则F 检验一般都能通过。但在实际应用中不必对2R值的大小过分苛求,重要的是考察模型的经济意义是否合理。第二节非线性回归模型参数的估计一、可线性化回归模型参数的估计对于一些非线性回归模型, 我们可以直接利用变量代换或先进行函数变换再通过变量代换(即间接代换) ,将模型转化成线性形式,再用最小二乘法进行估计的方法。在研究实际经济问题中有以下几类非线性模型,进行变量的直接或间接代换转化为线性模型
24、。倒数变换模型(双曲函数模型)双曲函数模型的一般形式为:xbay1令xx1,即进行变量的倒数变换,可以将原模型转化为线性回归模型bxay双对数模型(幂函数模型)模型的一般形式为:xbaylnln令xxyyln,ln则原模型转化为以下线性回归模型bxay在双对数模型中回归系数b具有特定的经济含义:b是被解释变量 y 关于解释 变 量x的 弹 性 , 即x每 增 加1% , y 将 增 加b% 。( 因 为xxyyxdxydyxdydb/lnln)半对数模型模型的一般形式为:xbayln(对数函数模型)bxayln(指数函数模型)令xxln或yyln则原模型转化为以下线性形式bxay;bxay精选
25、学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 30 页在半对数模型中回归系数b也具有很直观的经济含义:在对数模型中b表明,x每增加 1%, y 将增长 0.01b个单位。因为xxyxdxdyxddyb/ln在指数函数模型中b表明,x每增加 1 个单位, y 将增长 100b%,特别地,当x为时间变量,则系数b衡量了 y 的年平均增长速度。因为xyydxydydxydb/ln多项式函数模型模型的一般形式为kkxbxbxbby2210令kkxxxxxx,221则原模型可转化为多元线性回归模型kkxbxbxbby22110二、不可线性化回归模
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年计量经济学第三版复习知识要点庞皓 2022 计量 经济学 第三 复习 知识 要点

限制150内