(高考数学复习资料讲练18)空间几何体的表面积和体积.doc
《(高考数学复习资料讲练18)空间几何体的表面积和体积.doc》由会员分享,可在线阅读,更多相关《(高考数学复习资料讲练18)空间几何体的表面积和体积.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-个性化教学辅导教案学科:数学 任课教师:叶雷 授课时间:2011 年 月 日(星期 ) : : 姓名阳丰泽年级高三性别男教学课题 空间几何体的表面积和体积教学目标(1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;重点难点课前检查作业完成情况:优 良 中 差 建议_ 第 讲 空间几何体的表面积和体积知识点:多面体的面积和体积公式名称侧面积(S侧)全面积(S全)体 积(V)棱柱棱柱直截面周长lS侧+2S底S底h=S直截面h直棱柱chS底h棱锥棱锥各侧面积之和S侧+S底S底h正棱锥ch棱台棱台各
2、侧面面积之和S侧+S上底+S下底h(S上底+S下底+)正棱台 (c+c)h表中S表示面积,c、c分别表示上、下底面周长,h表斜高,h表示斜高,l表示侧棱长。2旋转体的面积和体积公式名称圆柱圆锥圆台球S侧2rlrl(r1+r2)lS全2r(l+r)r(l+r)(r1+r2)l+(r21+r22)4R2Vr2h(即r2l)r2hh(r21+r1r2+r22)R3表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台 上、下底面半径,R表示半径。题型1:柱体的体积和表面积【例1】一个长方体全面积是20cm2,所有棱长的和是24cm,求长方体的对角线长.解:设长方体的长、宽
3、、高、对角线长分别为x cm、y cm、z cm、l cm依题意得: 由(2)2得:x2+y2+z2+2xy+2yz+2xz=36(3)由(3)(1)得x2+y2+z2=16即l2=16,所以l=4(cm)。点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。【例2】如图,三棱柱ABCA1B1C1中,若E、F分别为AB、AC 的中点,平面EB1C1将三棱柱分成体积为V1、V2的两部分,那么V1V2= _ _。解:设三棱柱的高为h,上下底的面积为S,体积为V,则V=V1+V2S
4、h。E、F分别为AB、AC的中点,SAEF=S,V1=h(S+S+)=ShV2=Sh-V1=Sh,V1V2=75。点评:解题的关键是棱柱、棱台间的转化关系,建立起求解体积的几何元素之间的对应关系。最后用统一的量建立比值得到结论即可。题型2:锥体的体积和表面积PABCDO【例3】在四棱锥PABCD中,底面是边长为2的菱形,DAB60,对角线AC与BD相交于点O,PO平面ABCD,PB与平面ABCD所成的角为60,求四棱锥PABCD的体积?解:(1)在四棱锥P-ABCD中,由PO平面ABCD,得PBO是PB与平面ABCD所成的角,PBO=60。在RtAOB中BO=ABsin30=1, 由POBO,
5、于是PO=BOtan60=,而底面菱形的面积为2。四棱锥PABCD的体积V=2=2。点评:本小题重点考查线面垂直、面面垂直、二面角及其平面角、棱锥的体积。题型3:棱台的体积、面积【例4】(1)如果棱台的两底面积分别是S、S,中截面的面积是S0,那么( )A B C2S0SS DS022SS(2)(1994全国,7)已知正六棱台的上、下底面边长分别为2和4,高为2,则其体积为( )A32 B28 C24 D20解析:(1)解析:设该棱台为正棱台来解即可,答案为A;(2) 正六棱台上下底面面积分别为:S上6226,S下64224,V台,答案B。点评:本题考查棱台的中截面问题。根据选择题的特点本题选
6、用“特例法”来解,此种解法在解选择题时很普遍,如选用特殊值、特殊点、特殊曲线、特殊图形等等。题型4:圆柱的体积、表面积及其综合问题【例5】一个圆柱的侧面积展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A B C D解析:设圆柱的底面半径为r,高为h,则由题设知h=2r.S全=2r2+(2r)2=2r2(1+2).S侧=h2=42r2,。答案为A。点评:本题考查圆柱的侧面展开图、侧面积和全面积等知识。【例6】如图99,一个底面半径为R的圆柱形量杯中装有适量的水.若放入一个半径为r的实心铁球,水面高度恰好升高r,则= 。解析:水面高度升高r,则圆柱体积增加R2r。恰好是半径为r的实心铁球
7、的体积,因此有r3=R2r。故。答案为。点评:本题主要考查旋转体的基础知识以及计算能力和分析、解决问题的能力。题型4:圆锥的体积、表面积及综合问题【例7】(1)(2002京皖春,7)在ABC中,AB=2,BC=1.5,ABC=120(如图所示),若将ABC绕直线BC旋转一周,则所形成的旋转体的体积是( )A BC D(2)(2001全国文,3)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的全面积是( ) A3 B3 C6 D9解析:(1)如图所示,该旋转体的体积为圆锥CADE与圆锥BADE体积之差,又求得AB=1。,答案D。(2)Sabsin,a2sin60,a24,a2,a=2r,r
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 复习资料 18 空间 几何体 表面积 以及 体积
限制150内