2022年初高中数学衔接教材第六讲简单的二元二次方程组 .pdf
《2022年初高中数学衔接教材第六讲简单的二元二次方程组 .pdf》由会员分享,可在线阅读,更多相关《2022年初高中数学衔接教材第六讲简单的二元二次方程组 .pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、优秀学习资料欢迎下载第六讲 简单的二元二次方程组在初中我们已经学习了一元一次方程、一元二次方程及二元一次方程组的解法,掌握了用消元法解二元一次方程组高中新课标必修2 中学习圆锥曲线时,需要用到二元二次方程组的解法因此,本讲讲介绍简单的二元二次方程组的解法含有两个未知数、且含有未知数的项的最高次数是2 的整式方程,叫做二元二次方程由一个二元一次方程和一个二元二次方程组成的方程组,或由两个二元二次方程组组成的方程组,叫做二元二次方程组一、由一个二元一次方程和一个二元二次方程组成的方程组一个二元一次方程和一个二元二次方程组成的方程组一般都可以用代入法求解其蕴含着转化思想:将二元一次方程化归为熟悉的一
2、元二次方程求解【例 1】解方程组2220 (1)30 (2)xyxy分析: 由于方程 (1)是二元一次方程,故可由方程(1),得2yx,代入方程 (2)消去y解: 由(1)得:2yx(3) 将(3)代入 (2)得:22(2 )30 xx,解得:1211xx或把1x代入 (3)得:22y;把1x代入 (3)得:22y原方程组的解是:11111122xxyy或说明: (1) 解由一个二元一次方程和一个二元二次方程组成的方程组的步骤:由二元一次方程变形为用x表示y的方程,或用y表示x的方程 (3);把方程 (3)代入二元二次方程,得一个一元二次方程;解消元后得到的一元二次方程;把一元二次方程的根,代
3、入变形后的二元一次方程(3) ,求相应的未知数的值;写出答案(2) 消x,还是消y,应由二元一次方程的系数来决定若系数均为整数,那么最好消去系数绝对值较小的,如方程210 xy,可以消去x,变形精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 7 页优秀学习资料欢迎下载得21xy,再代入消元(3) 消元后,求出一元二次方程的根,应代入二元一次方程求另一未知数的值,不能代入二元二次方程求另一未知数的值,因为这样可能产生增根,这一点切记【例 2】解方程组11 (1)28 (2)xyxy分析: 本题可以用代入消元法解方程组,但注意到方程组的特点
4、,可以把x、y看成是方程211280zz的两根,则更容易求解解: 根据一元二次方程的根与系数的关系,把x、y看成是方程211280zz的两根,解方程得:4z或z=7 原方程组的解是:11114774xxyy或说明: (1) 对于这种对称性的方程组xyaxyb,利用一元二次方程的根与系数的关系构造方程时,未知数要换成异于x、y的字母,如z(2) 对称形方程组的解也应是对称的,即有解47xy,则必有解74xy二、由两个二元二次方程组成的方程组1可因式分解型的方程组方程组中的一个方程可以因式分解化为两个二元一次方程,则原方程组可转化为两个方程组,其中每个方程组都是由一个二元二次方程和一个二元一次方程
5、组成【例 3】解方程组22225() (1)43 (2)xyxyxxyy分析: 注意到方程225()xyxy,可分解成()(5)0 xyxy,即得0 xy或50 xy,则可得到两个二元二次方程组,且每个方程组中均有一个方程为二元一次方程解: 由(1)得:225()0()()5()0()(5)0 xyxyxyxyxyxyxy0 xy或50 xy 原方程组可化为两个方程组:22225004343xyxyxxyyxxyy或精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 7 页优秀学习资料欢迎下载用代入法解这两个方程组,得原方程组的解是:312
6、41234431643,614343xxxxyyyy说明: 由两个二元二次方程组成的方程组中,有一个方程可以通过因式分解,化为两个二元一次方程,则原方程组转化为解两个方程组,其中每一个方程组均有一个方程是二元一次方程【例 4】解方程组2212 (1)4 (2)xxyxyy分析: 本题的特点是方程组中的两个方程均缺一次项,我们可以消去常数项,可得到一个二次三项式的方程对其因式分解,就可以转化为例3 的类型解: (1) (2)3得:223()0 xxyxyy即22230(3 )()0 xxyyxyxy300 xyxy或 原方程组可化为两个二元一次方程组:22300,44xyxyxyyxyy用代入法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年初高中数学衔接教材第六讲简单的二元二次方程组 2022 年初 高中数学 衔接 教材 第六 简单 二元 二次 方程组
限制150内