广东省广州市三校2020-2021高一下学期数学期末联考试卷及答案.pdf
《广东省广州市三校2020-2021高一下学期数学期末联考试卷及答案.pdf》由会员分享,可在线阅读,更多相关《广东省广州市三校2020-2021高一下学期数学期末联考试卷及答案.pdf(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 2020-2021 学年下学期期末三校联考学年下学期期末三校联考 高一数学高一数学 命题学校:广大附中命题学校:广大附中 本试卷共本试卷共 4页,页,22 小题,满分小题,满分 150 分分.考试用时考试用时 120 分钟分钟. 一一 选择题:本大题选择题:本大题 8小题,每小题小题,每小题 5 分,共分,共 40 分分. 1. i虚数单位,若复数z满足()11zii+= ,则z =( ) A. 0 B. 1 C. 2 D. 2 2. 下列结论中,错误的是( ) A. “1x =”是“20 xx=”的充分不必要条件 B. 已知命题2:,10pxR x + ,则2:,10pxR x + C.
2、“220 xx+”是“1x ”的充分不必要条件; D. 命题:“xR ,sin1x ”的否定是“0 xR,0sin1x ”; 3. 如图,在平行四边形ABCD中,13AEAC= ,若EDADAB=+ ,则+=( ) A. 13 B. 1 C. 23 D. 13 4. 若某同学连续3次考试的名次(3次考试均没有出现并列名次的情况)不低于第3名,则称该同学为班级的尖子生.根据甲、乙、丙、丁四位同学过去连续3次考试名次的数据,推断一定是尖子生的是( ) A. 甲同学:平均数为2,方差小于1 B. 乙同学:平均数为2,众数为1 C. 丙同学:中位数为2,众数为2 D. 丁同学:众数2,方差大于1 5.
3、 如图,矩形ABCD中,3AB =,正方形ADEF的边长为 1,且平面ABCD 平面ADEF,则异面直线BD与FC所成角的余弦值为( ) 为为 A. 77 B. 77 C. 55 D. 55 6. 化简32cos202tan20所得的结果是( ) A. 14 B. 12 C. 32 D. 2 7. 已知函数( )yf x=是定义在R上的偶函数,且()( )2fxf x=,当01x时,( )f xx=,设函数7( )( )logg xf xx=,则( )g x的零点的个数为( ) A. 6 B. 12 C. 8 D. 14 8. 已知正实数x,y满足434xy+=,则112132xy+的最小值为
4、( ) A. 3284+ B. 1223+ C. 1223+ D. 1222+ 二二多选题:本大题多选题:本大题 4 小题,每小题小题,每小题 5 分,共分,共 20 分,选对得分,选对得 5,漏选得,漏选得 2 分,分,错选得错选得 0 分分. 9. 下列命题中正确的是( ) A. (0,)x +,23xx B. (0,1)x ,23loglogxx D. 1(0, )3x ,131( )log2xx 10. 正方体1111ABCDABC D棱长为 1,E,F,G分别为 BC,CC1,BB1的中点.则( ) 的 A. 直线 D1D 与直线 AF 垂直 B. 直线 A1G与平面 AEF平行 C
5、. 平面 AEF 截正方体所得的截面面积为98 D. 点 C与点 G 到平面 AEF 的距离相等 11. 将曲线2sin3sin()cosyxxx=+上每个点的横坐标伸长为原来的 2 倍,纵坐标不变,得到( )g x的图象,则下列说法正确的是( ) A. 213g= B. ( )g x的图象可由1cos2yx=+的图象向右平移23个单位长度得到 C. ( )g x在0,上的值域为30,2 D. ( )g x的图象关于点,06对称 12. 设函数( )(),f xx xbxc b cR=+,则下列命题中正确有( ) A. 若()()201920192020ff+=,则1010c = B. 方程(
6、 )0f x =可能有三个实数根 C. 当0b 时,函数( )f x在R上有最小值 三三填空题:本大题填空题:本大题 4 小题,每小题小题,每小题 5 分,共分,共 20 分分. 13. 小明和小红各自扔一颗均匀的正方体骰子,两人相互独立地进行,则小明扔出的点数不大于 2或小红扔出的点数不小于 3 的概率为_ 14. 如图所示,在ABC中,6,45 ,120 ,3ABABCADBCD= =,则AC的长是_ 的 15. 在平行四边形 ABCD中,ABBD,2221ABBD+=,将此平行四边形沿对角线BD 折叠,使平面ABD 平面 CBD,则三棱锥 A-BCD外接球的体积是_. 16. 已知函数(
7、 )()()2ln2010 xxx xf xxx=+,若( )f x的图象上有且仅有 2个不同的点关于直线32y = 的对称点在直线30kxy=,则实数k的取值是_ 四四解答题:本大题解答题:本大题 6 小题,第小题,第 17 题题 10分,其余各题分,其余各题 12分,共分,共 70 分分. 17. 在ABC中,,A B为锐角,角, ,A B C所对的边分别为, ,a b c,且5sin5A =,10sin10B =. (1)求AB+的值; (2)若21ab=,求, ,a b c的值. 18. 春节期间,某地昼夜气温呈周期性变化,温度y随时间x变化近似满足函数sin()yAxb=+(0A,0
8、,)在R上是减函数,点1,12233(), (,(),(,()A x f xB xf xC xf x从左到右依次是函数( )yf x=图象上三点,且2132xxx=+. (1)求证:ABC是钝角三角形; (2)试问,ABC能否是等腰三角形?若能,求ABC面积的最大值;若不能,请说明理由. 的 2020-2021 学年下学期期末三校联考学年下学期期末三校联考 高一数学高一数学 命题学校:广大附中命题学校:广大附中 本试卷共本试卷共 4页,页,22 小题,满分小题,满分 150 分分.考试用时考试用时 120 分钟分钟. 一一 选择题:本大题选择题:本大题 8小题,每小题小题,每小题 5 分,共分
9、,共 40 分分. 1. i为虚数单位,若复数z满足()11zii+= ,则z =( ) A. 0 B. 1 C. 2 D. 2 【答案】B 【解析】 【分析】由复数除法运算可求得z,由模长定义可求得结果. 【详解】()()()()11121112iiiiziiii= +,1z=. 故选:B. 2. 下列结论中,错误的是( ) A. “1x =”是“20 xx=”的充分不必要条件 B. 已知命题2:,10pxR x + ,则2:,10pxR x + C. “220 xx+”是“1x ”的充分不必要条件; D. 命题:“xR ,sin1x ”的否定是“0 xR,0sin1x ”; 【答案】C 【
10、解析】 【分析】根据充分必要条件和全称量词的否定形式判断即可. 【详解】当1x =时,20 xx=.当20 xx=时,1x =或0 x =.“1x =”是“20 xx=”的充分不必要条,A对. 对于含有一个量词的全称命题p:“任意的”xM,( )p x的否定,p是:“存在”xM,( )p x.B 对.同理,D对. 当220 xx+时,1x 或2x 时,220 xx+.“220 xx+”是“1x ”的必要不充分条件,C错. 故选:C. 3. 如图,在平行四边形ABCD中,13AEAC= ,若EDADAB=+ ,则+=( ) A. 13 B. 1 C. 23 D. 13 【答案】D 【解析】 【分
11、析】根据已知条件利用平面向量的线性运算求得ED 关于,AD AB 的线性表达式,然后利用平面向量基本定理中的分解的唯一性得到 和 的值,进而得解. 【详解】()11213333EDADAEADACADABADADAB=+= , 又EDADAB=+ ,AD AB ,不共线 , 根据平面向量基本定理可得21,33= , 13+=, 故选:D. 【点睛】本题考查平面向量的基本运算和基本定理,属基础题,关键是根据已知条件利用平面向量的线性运算求得ED 关于,AD AB 的线性表达式,然后利用平面向量基本定理中的分解的唯一性得到 和 的值. 4. 若某同学连续3次考试的名次(3次考试均没有出现并列名次的
12、情况)不低于第3名,则称该同学为班级的尖子生.根据甲、乙、丙、丁四位同学过去连续3次考试名次的数据,推断一定是尖子生的是( ) A. 甲同学:平均数为2,方差小于1 B. 乙同学:平均数为2,众数为1 C. 丙同学:中位数为2,众数为2 D. 丁同学:众数为2,方差大于1 【答案】A 【解析】 【分析】根据定义,结合各组的情况,举出特例排除错误选项;对正确选项,计算即可做出判断. 【详解】对于甲同学,平均数为2,方差小于1,设甲同学三次考试的名次分别为1x、 2x、3x, 若1x、2x、3x中至少有一个大于等于4,则方差为()()()22221231422233sxxx=+,与已知条件矛盾,
13、所以,1x、2x、3x均不大于3,满足题意; 对于乙同学,平均数为2,众数为1,则三次考试的成绩的名次为1、1、4, 即必有一次考试为第4名,不满足题意; 对于丙同学,中位数为2,众数为2,可举反例:2、2、4,不满足题意; 对于丁同学,众数为2,方差大于1,可举特例:2、2、5,则平均数为3, 方差为()()222122353213s=+=,不满足条件. 故选:A. 【点睛】关键点点睛:解决本题的关键在于以下两点: (1)在判断选项不成立时,可通过举反例来否定; (2)在判断 A选项时,可1x、2x、3x中至少有一个大于或等于4,利用反证法来推导. 5. 如图,矩形ABCD中,3AB =,正
14、方形ADEF的边长为 1,且平面ABCD 平面ADEF,则异面直线BD与FC所成角的余弦值为( ) A. 77 B. 77 C. 55 D. 55 【答案】C 【解析】 【分析】取 AF的中点 G,联结 AC 交 BD于 O 点,异面直线BD与FC所成角即直线BD与OG所成角.在OBG中,分别求得,OB OG BG,利用余弦定理即可求得cosBOG,从而求得异面直线夹角的余弦值. 【详解】取 AF的中点 G,联结 AC 交 BD于 O 点,如图所示, 则OG CF,且12OGCF=,异面直线BD与FC所成角即直线BD与OG所成角, 由平面ABCD 平面ADEF知,AF 平面ABCD, 由题易知
15、2=ACBD,22125CF =+=,则1522OGCF=,112OBBD=, 22113( )( 3)22BG =+=,则在OBG中,由余弦定理知, 2222225131()()522cos255212OBOGBGBOGOB OG+= , 由两直线夹角取值范围为0,2,则直线BD与OG所成角即异面直线BD与FC所成角的余弦值为55 故选:C 【点睛】方法点睛:将异面直线平移到同一个平面内,利用余弦定理解三角形,求得线线夹角. 6. 化简32cos202tan20所得的结果是( ) A. 14 B. 12 C. 32 D. 2 【答案】B 【解析】 【分析】先切化弦并整理得3cos2032co
16、s202tan22sin4002sin20 =,再结合 ()sin40sin 6020=展开整理即可得答案. 【详解】解:3cos203cos204sin20 cos202cos202sin202s32cos202tan2in200 = ()3cos202sin 60203cos202sin402sin202sin20= ()3cos202 sin60 cos20cos60 sin202sin20= 3cos203cos20sin20sin2012sin202sin202+=. 故选:B 【点睛】本题考查利用三角恒等变换求函数值,考查运算求解能力,是中档题.本题解题的关键在于先根据切化弦的方法
17、整理得3cos2032cos202tan22sin4002sin20 =,再根据()sin40sin 6020=化简整理即可求解. 7. 已知函数( )yf x=是定义在R上的偶函数,且()( )2fxf x=,当01x时,( )f xx=,设函数7( )( )logg xf xx=,则( )g x的零点的个数为( ) A. 6 B. 12 C. 8 D. 14 【答案】B 【解析】 【分析】分别作出( )yf x=和7logyx=的图象,数形结合可得结果. 【详解】依题意可知,对Rx ,( )()()2f xfxfx=+,所以( )f x是以 2 为周期的偶函数. ( )0g x =即( )
18、7logf xx=,在同一坐标系中分别作出( )yf x=和7logyx=的图象, 由图可知,两函数图象有 12 个交点,即函数( )g x共有 12个零点. 故选:B. 8. 已知正实数x,y满足434xy+=,则112132xy+的最小值为( ) A. 3284+ B. 1223+ C. 1223+ D. 1222+ 【答案】A 【解析】 【分析】将 4x+3y=4变形为含 2x+1 和 3y+2的等式,即 2(2x+1)+(3y+2)=8,再将式子换元,由基本不等式换“1”法求解即可 【详解】由正实数 x,y 满足 4x+3y=4,可得 2(2x+1)+(3y+2)=8.令 a=2x+1
19、,b=3y+2,可得 2a+b=8. 所求11111121221213288ababxyababba+ +=+=+=+ + 412221328=8abba+ 当且仅当2abba=时取等号,所以答案为3284+. 故选:A. 二二多选题:本大题多选题:本大题 4 小题,每小题小题,每小题 5 分,共分,共 20 分,选对得分,选对得 5,漏选得,漏选得 2 分,分,错选得错选得 0 分分. 9. 下列命题中正确的是( ) A. (0,)x +,23xx B. (0,1)x ,23loglogxx D. 1(0, )3x ,131( )log2xx且3log0 x 可得 B正确; 对于选项 C:令
20、12x =,可推得121( )log2xx时,22133xxx=,所以23xx,且3log0 x ,所以23loglogxx,故选项 C 不正确; 对于选项 D:当13x =时,131log13=,由对数函数和指数函数的性质可知,当1(0, )3x时, 131( )1log2xx ,故选项 D正确; 故选:BD 【点睛】关键点点睛:熟练掌握指数函数的单调性和对数函数的单调性是解答本题的关键,对于全称命题:必须所有的对象都使命题成立,命题为真命题;存在一个对象使命题不成立,则命题即为假命题;对于特称命题:存在一个对象使命题成立,则命题为真;所有的对象都使命题为假,则命题为假命题 10. 正方体1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广东省 广州市 2020 2021 一下 学期 数学 期末 联考 试卷 答案
限制150内