《2022年第五章二元一次方程组导学案 .pdf》由会员分享,可在线阅读,更多相关《2022年第五章二元一次方程组导学案 .pdf(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载第五章二元一次方程组导学案5.1 认识二元一次方程组班级:姓名 : 小组:【学习目标 】 1. 理解二元一次方程的定义和二元一次方程的解;2. 会判断二元一次方程和二元一次方程的解; 3. 会求简单的不定方程的解。【学习重点 】 1. 会判断二元一次方程和二元一次方程的解。 2. 会求简单的不定方程的解。【学习过程 】 (一) 学习准备 :1. 含未知数的等式叫,如:312x2. 若方程中这样的方程叫,如:8743xx3. 满足方程左右两边未知数的值叫做方程的 4.若2x是关于x一元一次方程82ax的解,则a= 5.方程8yx是一元一次方程吗?;若不是,请你把它取名叫方程。(二
2、)课堂探究:阅读教材 P103 P104,试解决下列问题:老牛与小马分析:审题:数量问题2小马老牛设老牛驮了x个包裹,小马驮了y个包裹。)(小马老牛1211. 二元一次方程: 像方程2yx和)1(21yx等这类方程中, 含有个未知数,并且所含未知数的项的次数都是的方程叫做。即时练习:下列方程是二元一次方程的是312yx;015xy;22yx;03zyx;32yx;53x2. 二元一次方程的解:定义: 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个即时练习:(1)请找出是二元一次方程8yx的解的是:注意等号对齐评析:二元一次方程的左右两边必须是式;方程中必须含个未知数;未知项的
3、次数为,而不是未知数的次数为1精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 12 页学习必备欢迎下载80yx;52yx;91yx。(2)已知21yx是二元一次方程52yax的解,求a的值。3. 二元一次方程组及方程组及二元一次方程组的解:定义: 共含有个未知数的两个方程所组成的一组方程,叫做二元一次方程组。即时练习:下列是二元一次方程组的是()36yxyx;32yx;12yxy;32yxy;43zxyx。定义: 二元一次方程组中各个方程的叫做这个二元一次方程组的解。即时练习:在下列数对中:(1)2,5,1,5,(2)(3)(4)2,0
4、,1,2,xxxxyyyy是方程0yx的解的是 _;是方程54yx?的解的是 _;既是方程0yx的解,又是方程54yx的解的是 _所以方程组54y0 xyx的解是(三)当堂检测:1. 方程3521nmyx是关于x、y二元一次方程,则m= ,n= 。2. 二元一次方程72yx的正整数解有()组 A1 B.2 C.3 D.4 3. 若满足方程组23451xyxy的y的值是 1,则该方程组的解是_3. 在(1)3,1,0(2)(3)0,1,1xxxyyy这三对数值中, _是方程32yx的解,_是方程12yx的解,因此 _是方程组2321xyxy的解 (填序号)方程组的解应写成byax的形式,以表示它
5、们要同时取值才能使方程组成立精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 12 页学习必备欢迎下载我 们 只 学 过 一 元 一 次 方程,想办法变成一元一次5.2 求解二元一次方程组(1)代入消元法班级:姓名 : 小组:【学习目标】学会用代入消元法解二元一次方程组。【学习重、难点】会用代入法解二元一次方程组,。一、学习准备1.下面方程中,是二元一次方程的是()A、1xyxB、223xxC、1xyD、21xy2.下面 4 组数值中,是二元一次方程210 xy的解的是()A. 26xyB. 34xyC. 43xyD. 62xy3.二元一
6、次方程2102xyyx的解是()A、43xyB、36xyC、24xyD、26xy4.如:25yx叫做用x表示y,39xy叫做用y表示x。( 1 ) 你 能 把 下 列 方 程 用x表 示y吗 ?2xy则y= ,23xy则y= 。( 2 ) 你 能 把 下 列 方 程 用y表 示x吗 ?2xy则x= ,41yx则x= 。二、课堂探究例 1 解下列方程3214 (1)3(2)xyx y解:把代入,得(注意把中的x换为y+3 时要加括号, 因为y+3 这个 整体 是x)所以原方程组的解是精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 12 页
7、学习必备欢迎下载想一想,变那个方程我们代入时更方便例 2 2316(1)413(2)xyxy解:由,得小组合作:上面解方程组的基本思路是什么?主要步骤有哪些?上面解方程的基本思路是“” 把“ 二元 ” 变为 “” 。主要步骤是:将其中一个方程中的某个未知数;将这个代数式代入另一个方程中,从而,化二元一次方程组为;解这个一元一次方程;把求得的一次方程的解代入方程中,求得另一个未知数值,组成方程组的解。这种解方程组的方法称为代入消元法 。简称 代入法 。简写为:编号表示代入解方程代回求另一个未知数值答语三、当堂检测。用代入消元法解下列方程组:(1)2102xyyx(2)22xyy x(3)2312
8、5xyxy(4)4311xyyx(5)22625xyyx(6)222312nmmn四、反思小结这节课我们学到了什么?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 12 页学习必备欢迎下载5.2 求解二元一次方程组( 2)加减消元法班级:姓名 : 小组:【学习目标】1. 会用加减法解二元一次方程组 2 掌握加减法解二元一次方程组的一般步骤【学习重点】会用加减消元法解二元一次方程组, 一、学习准备1.代入消元法的基本步骤:2. 用代入消元法解下列方程组:(1)528xyxy(2)32923xyxy3. 等式的基本性质:二、课堂探究:例 1
9、.3521(1)2511(2)xyxy解:讨论:观察上题,两方程有何特点?除了代入消元法你还能有其他的方法消元吗?注意方程中的5y 与中的 -5y 是相反数,再请注意:两个等式的两边也同时分别相加或相减,等式仍成立吗?例 2. 解方程组132752yxyx解: - 得: _ y=_ 把y代入得:x原方程组的解是_yx上面解方程组的基本思路是什么?主要步骤有哪些?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 12 页学习必备欢迎下载例 3. 解方程组17431232yxyx解: 3 得:3696yx 2 得:3486yx小结:当两个方程
10、中某一个未知数的系数是相同或互为相反数时,直接把两个方程的两边相加或相减就可以消去一个未知数,达到消元的目的。当两个方程中某一个未知数的系数的绝对值成倍数时,需把其中一个方程的两边同时乘以一个适当的整数,让这个未知数的系数的绝对值相等。若两个方程中两个未知数的系数不成倍数时,需要把两个方程都乘以适当的书,以便某个未知数的系数的绝对值相等,这种情况需要先确定消哪一个未知数,一般先消去系数简单的。三、当堂检测:用加减消元法解下列方程组:(1)1929327yxyx(2)522534tsts(3)23133418xyxy(4 )49291123yxyx (5)156356yxyx (6)587965
11、yxyx四、反思小结1. 解二元一次方程组的思路是消元,把二元变为一元2. 解题步骤概括为三步即:变、代、解、3. 由一个方程变形得到的一个含有一个未知数的代数式必须代入另一个方程中去,否则会出现一个恒等式。加减法的步骤: 编号观察,确定要先消去的未知数。 把选定的未知数的系数变成相等或互为相反数。把两个方程相加(减),求出一个未知数的值。代,求另一个未知数的值。答语。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 12 页学习必备欢迎下载5.3 应用二元一次方程组鸡兔同笼班级:姓名 : 小组:【学习目标】能找出实际问题中的等量关系,列
12、出二元一次方程组,解决简单的实际问题。【学习重点】将题目中的等量关系进行转化,列出二元一次方程组。一 : 学 习 准 备: 1. 回 忆 列 一 元 一 次 方 程 解 应 用 题 时 的 常 用 步骤:,。2二元一次方程组的解法有:_、_。3解方程组944235yxyx1453yxyx二课堂探究:例 1:阅读课本P115完成“雉兔同笼”题的 分析 :等量关系:鸡头+兔头 = ;鸡脚 +兔脚 = 。设鸡有 x 只,兔有y 只。列方程:则鸡头有兔头有鸡脚有兔脚有请你完成本题的标准解答即时练习:( 只写分析)若两个数中, 较大数的3 倍是较小数的8 倍, 较大数的一半与较小数的差是4, 那么较大的
13、数是多少?分析等量关系:设列方程组:例 2:以绳测井 , 若将绳三折测之, 绳多五尺; 若将绳四折测之, 绳多一尺, 绳长 , 井深各几何? 分析: 题目大意是等量关系:解:设精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 12 页学习必备欢迎下载即时练习: 4 辆小卡车和5 辆大卡车一次共可以运货物27 吨,6 辆小卡车和10 辆大卡车一次共可以运货物51 吨, 问小卡车和大卡车每辆每次可运货物多少吨?分析:等量关系:解:设三、反思小结今天,我们学习了列方程组解应用题,应注意的是:解应用题的格式。解应用题时,等量关系如何去找?四、达标
14、检测:1今有鸡兔若干, 它们共有24 个头和 74 只脚 , 则鸡兔各有()A.鸡 10 兔 14 B. 鸡 11 兔 13 C. 鸡 12 兔 12 D. 鸡 13 兔 11 2一队敌人一队狗, 两队并成一队走, 脑袋共有八十个, 却有二百条腿走, 请君仔细数一数,多少敌军多少狗?3某制衣厂某车间计划用10 天加工一批出口童装和成人装共360 件, 该车间的加工能力是:每天能单独加工童装45 件或成人装30 件。(1)该车间应安排几天加工童装, 几天加工成人装,才能如期完成任务?(2)若加工童装一件可获利80 元, 加工成人装一件可获利120 元, 那么该车间加工完这批服装后,共可获利多少元
15、?4某高校共有5 个大餐厅和2 个小餐厅 , 经过测试 , 同时开放 1 个大餐厅 ,2 个小餐厅 , 可供 1680 名学生就餐;同时开放2 个大餐厅 ,1 个小餐厅 , 可供 2280 名学生就餐。(1) 求 1 个大餐厅 ,1 个小餐厅分别可供多少名学生就餐;(2) 若 7 个餐厅同时开放, 能否供全校5300 名学生就餐 ?请说明理由。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 12 页学习必备欢迎下载5.4 应用二元一次方程组增收节支班级:姓名 : 小组:【学习目标】1. 能借助表格分析较为复杂问题中的数量关系,建立方程组
16、解决问题。2进一步经历和体验列方程组解决问题的过程,体会方程(组)是刻画现实世界数量关系的有效数学模型,发展模型思想和应用意识。【学习重点】用列表的方式分析题中的各量关系, 加强学生列方程组的技能训练。一。学习准备1. 利润 =_。2. 阅读课本P117,完成“总收入、总支出”题的分析 :等量关系:去年(收入) - 去年(总支) = 今年(收入)- 今年(总支) = 设去年总收入为x 万元,总支出为y 万元,则有总收入 /万元总支出 / 万元利润 / 万元去年x y 200 今年根据上表,可列出方程组解得。因此,去年的总收入是,总支出是。二课堂探究:例 1、 医院用甲 , 乙两种原料为手术后的
17、病人配制营养品, 每克甲原料含0.5 单位蛋白质和1 单位铁质 , 每克乙原料含0.7 单位蛋白质和0.4 单位铁质 . 若病人每餐需要35 单位蛋白质和 40 单位铁质 . 那么每餐甲、乙两种原料各多少克恰好满足病人的需要?分析 :等量关系:甲(蛋白质)+乙(蛋白质)= ; 甲(铁) +乙(铁) = 设每餐需甲原料x 克,需乙原料y 克,则有甲原料 xg 乙原料 yg 所配制的营养品其所含蛋白质其所含铁质解:三反思小结请你写出今天学习的收获(至少两条):精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 12 页学习必备欢迎下载1. 有甲
18、 , 乙两种商品,甲商品的利润率为5% ,乙商品的利润率为4% ,共获利46 元,价格调整后,甲商品的利润率为4% ,乙商品的利润率为5% ,共获利44 元,则两种商品的进价各为多少?2某校八年级三班, 四班共有95 人, 体育锻炼的平均达标率为60% ,如果三班的达标率为40% ,四班的平均达标率为78%,则三班有多少人?四班有多少人?3 某商店准备用两种价格分别为每千克18 元和每千克10 元的糖果混合成杂拌糖果出售,混合后糖果的价格是每千克15 元。现在要配制这种杂拌糖果100 千克,需要两种糖果各多少千克?4某同学的父母用甲, 乙两种形式为其存储一笔教育准备金10000 元,甲种年利率
19、为2.25%,乙种年利率为2.5%, 一年后 , 这名同学得到本息和共10243.5 元, 问其父母为其存储的甲 , 乙两种形式的教育准备金各多少钱?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 12 页学习必备欢迎下载5.5 应用二元一次方程组里程碑上的数班级:姓名 : 小组:【学习目标】1:能分析复杂问题中的数量关系,建立方程组解决问题。2:进一步经历和体验列方程解决实际问题的过程,体会模型思想,发展应用意识。【学习重点】体验列方程组解决实际问题的过程,理解题意,找出适当的等量关系,并列出方程组。一、 学习准备:1. 一个两位数
20、,十位数字为a,个位数字为b, 则这两个数表示为。2. 一个三位数,百位数字为a, 十位数字为b, 个位数字为c, 则这个三数表示为。3. (解读教材奇怪的数字)阅读教材 P120引例,完成下列填空:小明爸爸骑着摩托车带着小明在公路上行驶。设小明在12.00 时看到的十位数字是x,个位数字是y,那么问题( 1):在 12.00 时小明看到的数字可表示为。根据两个数字和是7,可列出方程为。问题( 2):在 13.00 小明看到的数字可表示为。故 12.00 13.00 间摩托车行驶的路程为。问题( 3):在 14.00 小明看到的数字可表示为。故 13.00 14.00 间摩托车行驶的路程为。问
21、题( 4): 12.00 13.00 与 13.00 14.00 两段时间内摩托车的行驶路程有什么关系?你能列出相应的方程吗?二、课堂探究两位数的应用题例、两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数。已知前一个四位数比后一个四位数大2178,求这两个两位数。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 12 页学习必备欢迎下载三、反思小结:通过对上述两个问题的解决,你认为列二元一次方程组解决问题应该注意些什么问题?步骤是怎样的呢?四、达标测评:1. 一个两位数,减去他的各位数之和的3 倍,结果是23,这个两位数除以它的各位数数之和,商是5,余数是1。这两位数是多少?2. 小明和小亮做加减法游戏,小明在一个加数后面多写了一个0,得到的和为242,而小亮在另一个加数后面多写了一个0,得到的和为341。原来两个加数是多少?3. 有一个两位数,数值是数字和的5 倍,如果数值加9,其和为这个两位数颠倒过来的两位数,求原来的两位数。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 12 页
限制150内