2011届高考数学第一轮复习资料精品试题-圆锥曲线.doc
《2011届高考数学第一轮复习资料精品试题-圆锥曲线.doc》由会员分享,可在线阅读,更多相关《2011届高考数学第一轮复习资料精品试题-圆锥曲线.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、.2011届高考数学第一轮复习精品试题:圆锥曲线选修1-1 第2章 圆锥曲线与方程考纲总要求:了解圆锥曲线的实际背景,了解在刻画现实世界和解决实际问题中的作用掌握椭圆的定义、几何图形、标准方程及简单几何性质了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质理解数形结合的思想了解圆锥曲线的简单应用2.1-2椭圆重难点:建立并掌握椭圆的标准方程,能根据已知条件求椭圆的标准方程;掌握椭圆的简单几何性质,能运用椭圆的几何性质处理一些简单的实际问题经典例题:已知A、B为椭圆+=1上两点,F2为椭圆的右焦点,若|AF2|+|BF2|=a,AB中点到椭圆左准线的距离为,求该椭圆方程当堂练习
2、:1下列命题是真命题的是( )A到两定点距离之和为常数的点的轨迹是椭圆B到定直线和定点F(c,0)的距离之比为的点的轨迹是椭圆C到定点F(c,0)和定直线的距离之比为(ac0)的点的轨迹 是左半个椭圆D到定直线和定点F(c,0)的距离之比为(ac0)的点的轨迹是椭圆2若椭圆的两焦点为(2,0)和(2,0),且椭圆过点,则椭圆方程是( )ABCD3若方程x2+ky2=2表示焦点在y轴上的椭圆,则实数k的取值范围为( )A(0,+) B(0,2) C(1,+) D(0,1)4设定点F1(0,3)、F2(0,3),动点P满足条件,则点P的轨迹是( )A椭圆 B线段 C不存在D椭圆或线段5椭圆和具有(
3、 )A相同的离心率 B相同的焦点C相同的顶点 D相同的长、短轴6若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为( )ABCD 7已知是椭圆上的一点,若到椭圆右准线的距离是,则点到左焦点的距离( ) ABCD8椭圆上的点到直线的最大距离是( ) A3BCD9在椭圆内有一点P(1,1),F为椭圆右焦点,在椭圆上有一点M,使|MP|+2|MF|的值最小,则这一最小值是( )A BC3 D410过点M(2,0)的直线m与椭圆交于P1,P2,线段P1P2的中点为P,设直线m的斜率为k1(),直线OP的斜率为k2,则k1k2的值为( )A2B2CD11离心率,一个焦点是的椭圆标准方程为 _ .1
4、2与椭圆4 x 2 + 9 y 2 = 36 有相同的焦点,且过点(3,)的椭圆方程为_13已知是椭圆上的点,则的取值范围是_ 14已知椭圆的短轴长为6,焦点到长轴的一个端点的距离等于,则椭圆的离心率等于_15已知椭圆的对称轴为坐标轴,离心率,短轴长为,求椭圆的方程 16过椭圆引两条切线PA、PB、A、B为切点,如直线AB与x轴、y轴交于M、N两点(1)若,求P点坐标;(2)求直线AB的方程(用表示);(3)求MON面积的最小值(O为原点)17椭圆与直线交于、两点,且,其中为坐标原点.(1)求的值;(2)若椭圆的离心率满足,求椭圆长轴的取值范围.18一条变动的直线L与椭圆+=1交于P、Q两点,
5、M是L上的动点,满足关系|MP|MQ|=2若直线L在变动过程中始终保持其斜率等于1求动点M的轨迹方程,并说明曲线的形状选修1-1 第2章 圆锥曲线与方程2.3双曲线重难点:建立并掌握双曲线的标准方程,能根据已知条件求双曲线的标准方程;掌握双曲线的简单几何性质,能运用双曲线的几何性质处理一些简单的实际问题经典例题:已知不论b取何实数,直线y=kx+b与双曲线总有公共点,试求实数k的取值范围当堂练习:1到两定点、的距离之差的绝对值等于6的点的轨迹 ( )A椭圆B线段C双曲线D两条射线2方程表示双曲线,则的取值范围是( ) AB C D或3 双曲线的焦距是( )A4BC8D与有关xyoxyoxyox
6、yo4已知m,n为两个不相等的非零实数,则方程mxy+n=0与nx2+my2=mn所表示的曲线可能是( ) A B C D5 双曲线的两条准线将实轴三等分,则它的离心率为( ) AB3CD 6焦点为,且与双曲线有相同的渐近线的双曲线方程是( )ABCD7若,双曲线与双曲线有( )A相同的虚轴B相同的实轴C相同的渐近线D 相同的焦点8过双曲线左焦点F1的弦AB长为6,则(F2为右焦点)的周长是( )A28 B22C14D129已知双曲线方程为,过P(1,0)的直线L与双曲线只有一个公共点,则L的条数共有 ( )A4条 B3条 C2条 D1条10给出下列曲线:4x+2y1=0; x2+y2=3;
7、,其中与直线y=2x3有交点的所有曲线是( )A B C D11双曲线的右焦点到右准线的距离为_12与椭圆有相同的焦点,且两准线间的距离为的双曲线方程为_13直线与双曲线相交于两点,则=_14过点且被点M平分的双曲线的弦所在直线方程为 15求一条渐近线方程是,一个焦点是的双曲线标准方程,并求此双曲线的离心率 16双曲线的两个焦点分别为,为双曲线上任意一点,求证:成等比数列(为坐标原点)17已知动点P与双曲线x2y21的两个焦点F1,F2的距离之和为定值,且cosF1PF2的最小值为.(1)求动点P的轨迹方程;(2)设M(0,1),若斜率为k(k0)的直线l与P点的轨迹交于不同的两点A、B,若要
8、使|MA|MB|,试求k的取值范围18某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上).选修1-1 第2章 圆锥曲线与方程2.4抛物线重难点:建立并掌握抛物线的标准方程,能根据已知条件求抛物线的标准方程;掌握抛物线的简单几何性质,能运用抛物线的几何性质处理一些简单的实际问题经典例题:如图, 直线y=x与抛物线y=x24交于A、B两点, 线段AB的垂直平分线与直线y=5交于Q点
9、. (1)求点Q的坐标;(2)当P为抛物线上位于线段AB下方(含A、B)的动点时, 求OPQ面积的最大值. 当堂练习:1抛物线的焦点坐标是 ( )A BCD 2已知抛物线的顶点在原点,焦点在y轴上,其上的点到焦点的距离为5,则抛物线方程为( ) A BC D3抛物线截直线所得弦长等于 ( )A BCD154顶点在原点,坐标轴为对称轴的抛物线过点(2,3),则它的方程是 ( )A或 B或 C D5点到曲线(其中参数)上的点的最短距离为( )A0 B1 CD2 6抛物线上有三点,是它的焦点,若 成等差数列,则 ( )A成等差数列 B成等差数列 C成等差数列 D成等差数列7若点A的坐标为(3,2),
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 第一轮 复习资料 精品 试题 圆锥曲线
限制150内