相似三角形应用(2).ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《相似三角形应用(2).ppt》由会员分享,可在线阅读,更多相关《相似三角形应用(2).ppt(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、相似三角形应用 F B C D A E2 2、ABCABC中,中,DEBCDEBC,EFABEFAB,已知,已知ADEADE和和EFCEFC的面积分别为的面积分别为4 4和和9 9,求,求ABCABC的面积。的面积。FEDCBAABBE41FDCABE若若SDOE=1cm2,求求SOBC ,SOEC 和和SABC.DCBOAE31516181BAEDCFB例例1:1:如图,为了估算河的宽度,我们可以在河对岸选如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点定一个目标作为点A A,再在河的这一边选点,再在河的这一边选点B B和和C C,使,使ABBCABBC,然后,再选点,然后,再选点
2、E E,使,使ECBCECBC,用视线确定,用视线确定BCBC和和AEAE的交点的交点D D此时如果测得此时如果测得BD120米,米,DC60米,米,EC50米,求米,求两岸间的大致距离两岸间的大致距离ABADCEB学.科.网解:解: 因为因为 ADBEDC, ABCECD90, 所以所以 ABDECD, 答:答: 两岸间的大致距离为两岸间的大致距离为100米米 DCBDECAB那 么)100(6050120DCECBDAB米解得 我们还可以在河对岸选定一目标点我们还可以在河对岸选定一目标点A,再在河的,再在河的一边选点一边选点D和和 E,使,使DEAD,然后,再选点,然后,再选点B,作作BC
3、DE,与视线,与视线EA相交于点相交于点C。此时,测得。此时,测得DE , BC, BD, 就可以求两岸间的大致距离就可以求两岸间的大致距离AB了。了。AD EBC此时如果测得此时如果测得BD45米,米,DE90米,米,BC60米,求米,求两岸间的大致距离两岸间的大致距离AB7.如图,一条河的两岸有一段是平行的,在如图,一条河的两岸有一段是平行的,在河的南岸边每隔河的南岸边每隔5米有一棵树,在北岸边每米有一棵树,在北岸边每隔隔50米有一根电线杆小丽站在离南岸边米有一根电线杆小丽站在离南岸边15米的点处看北岸,发现北岸相邻的两根电线米的点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相似 三角形 应用
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内