2012年江苏高考数学试卷含规范标准答案和解析.doc
《2012年江苏高考数学试卷含规范标准答案和解析.doc》由会员分享,可在线阅读,更多相关《2012年江苏高考数学试卷含规范标准答案和解析.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、,.2012年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分请把答案填写在答题卡相应位置上1(5分)已知集合A=1,2,4,B=2,4,6,则 AB=_2(5分)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取_名学生3(5分)设a,bR,a+bi=(i为虚数单位),则a+b的值为_4(5分)图是一个算法流程图,则输出的k的值是_5(5分)函数f(x)=的定义域为_6(5分)现有10个数,它们能构成一个以1为首项,3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率
2、是_7(5分)如图,在长方体ABCDA1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥ABB1D1D的体积为_cm38(5分)在平面直角坐标系xOy中,若双曲线的离心率为,则m的值为_9(5分)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是_10(5分)设f(x)是定义在R上且周期为2的函数,在区间1,1上,f(x)=其中a,bR若=,则a+3b的值为_11(5分)设a为锐角,若cos(a+)=,则sin(2a+)的值为_12(5分)在平面直角坐标系xOy中,圆C的方程为x2+y28x+15=0,若直线y=kx2上至少存在一点,使得以该
3、点为圆心,1为半径的圆与圆C有公共点,则k的最大值是_13(5分)已知函数f(x)=x2+ax+b(a,bR)的值域为0,+),若关于x的不等式f(x)c的解集为(m,m+6),则实数c的值为_14(5分)已知正数a,b,c满足:5c3ab4ca,clnba+clnc,则的取值范围是_二、解答题:本大题共6小题,共计90分请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤15(14分)在ABC中,已知(1)求证:tanB=3tanA;(2)若cosC=,求A的值16(14分)如图,在直三棱柱ABCA1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于
4、点C),且ADDE,F为B1C1的中点求证:(1)平面ADE平面BCC1B1;(2)直线A1F平面ADE17(14分)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米某炮位于坐标原点已知炮弹发射后的轨迹在方程y=kx(1+k2)x2(k0)表示的曲线上,其中k与发射方向有关炮的射程是指炮弹落地点的横坐标(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由18(16分)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点已知a,b是实数,
5、1和1是函数f(x)=x3+ax2+bx的两个极值点(1)求a和b的值;(2)设函数g(x)的导函数g(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x)c,其中c2,2,求函数y=h(x)的零点个数19(16分)如图,在平面直角坐标系xOy中,椭圆(ab0)的左、右焦点分别为F1(c,0),F2(c,0)已知(1,e)和(e,)都在椭圆上,其中e为椭圆的离心率(1)求椭圆的方程;(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P(i)若AF1BF2=求直线AF1的斜率;(ii)求证:PF1+PF2是定值20(16分)已知各项均为
6、正数的两个数列an和bn满足:an+1=,nN*,(1)设bn+1=1+,nN*,求证:数列是等差数列;(2)设bn+1=,nN*,且an是等比数列,求a1和b1的值三、附加题(21选做题:任选2小题作答,22、23必做题)(共3小题,满分40分)21(20分)A选修41:几何证明选讲如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE求证:E=CB选修42:矩阵与变换已知矩阵A的逆矩阵,求矩阵A的特征值C选修44:坐标系与参数方程在极坐标中,已知圆C经过点P(,),圆心为直线sin()=与极轴的交点,求圆C的极坐标方程D选修45:不
7、等式选讲已知实数x,y满足:|x+y|,|2xy|,求证:|y|22(10分)设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,=0;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,=1(1)求概率P(=0);(2)求的分布列,并求其数学期望E()23(10分)设集合Pn=1,2,n,nN*记f(n)为同时满足下列条件的集合A的个数:APn;若xA,则2xA;若xA,则2xA(1)求f(4);(2)求f(n)的解析式(用n表示)2012年江苏高考数学参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分请把答案填写在答题卡相应位置上1(5分)已知集合
8、A=1,2,4,B=2,4,6,则 AB=1,2,4,6考点:并集及其运算4664233专题:计算题分析:由题意,A,B两个集合的元素已经给出,故由并集的运算规则直接得到两个集合的并集即可解答:解:A=1,2,4,B=2,4,6,AB=1,2,4,6故答案为1,2,4,6点评:本题考查并集运算,属于集合中的简单计算题,解题的关键是理解并的运算定义2(5分)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取15名学生考点:分层抽样方法4664233分析:根据三个年级的人数比,做出高二所占的比例,用要抽取得样本
9、容量乘以高二所占的比例,得到要抽取的高二的人数解答:解:高一、高二、高三年级的学生人数之比为3:3:4,高二在总体中所占的比例是=,用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,要从高二抽取,故答案为:15点评:本题考查分层抽样方法,本题解题的关键是看出三个年级中各个年级所占的比例,这就是在抽样过程中被抽到的概率,本题是一个基础题3(5分)设a,bR,a+bi=(i为虚数单位),则a+b的值为8考点:复数代数形式的乘除运算;复数相等的充要条件4664233专题:计算题分析:由题意,可对复数代数式分子与分母都乘以1+2i,再由进行计算即可得到a+bi=5+3i,再由复数相等的充
10、分条件即可得到a,b的值,从而得到所求的答案解答:解:由题,a,bR,a+bi=所以a=5,b=3,故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握,复数相等的充分条件是将复数运算转化为实数运算的桥梁,解题时要注意运用它进行转化4(5分)图是一个算法流程图,则输出的k的值是5考点:循环结构4664233专题:计算题分析:利用程序框图计算表达式的值,判断是否循环,达到满足题目的条件,结束循环,得到结果即可解答:解:15+4=00,不满足判断框则k=2,2210+4=20,不满足判断框的条件,则k=3,
11、3215+4=20,不成立,则k=4,4220+4=00,不成立,则k=5,5225+4=40,成立,所以结束循环,输出k=5故答案为:5点评:本题考查循环框图的作用,考查计算能力,注意循环条件的判断5(5分)函数f(x)=的定义域为(0,考点:对数函数的定义域4664233专题:计算题分析:根据开偶次方被开方数要大于等于0,真数要大于0,得到不等式组,根据对数的单调性解出不等式的解集,得到结果解答:解:函数f(x)=要满足120,且x0,x0,x0,x0,0,故答案为:(0,点评:本题考查对数的定义域和一般函数的定义域问题,在解题时一般遇到,开偶次方时,被开方数要不小于0,;真数要大于0;分
12、母不等于0;0次方的底数不等于0,这种题目的运算量不大,是基础题6(5分)现有10个数,它们能构成一个以1为首项,3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是考点:等比数列的性质;古典概型及其概率计算公式4664233专题:计算题分析:先由题意写出成等比数列的10个数为,然后找出小于8的项的个数,代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1,3,(3)2,(3)3(3)9其中小于8的项有:1,3,(3)3,(3)5,(3)7,(3)9共6个数这10个数中随机抽取一个数,则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及
13、古典概率的计算公式的应用,属于基础试题7(5分)如图,在长方体ABCDA1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥ABB1D1D的体积为6cm3考点:棱柱、棱锥、棱台的体积4664233专题:计算题分析:过A作AOBD于O,求出AO,然后求出几何体的体积即可解答:解:过A作AOBD于O,AO是棱锥的高,所以AO=,所以四棱锥ABB1D1D的体积为V=6故答案为:6点评:本题考查几何体的体积的求法,考查空间想象能力与计算能力8(5分)在平面直角坐标系xOy中,若双曲线的离心率为,则m的值为2考点:双曲线的简单性质4664233专题:计算题;压轴题分析:由双曲线方程得y2的分母
14、m2+40,所以双曲线的焦点必在x轴上因此a2=m0,可得c2=m2+m+4,最后根据双曲线的离心率为,可得c2=5a2,建立关于m的方程:m2+m+4=5m,解之得m=2解答:解:m2+40双曲线的焦点必在x轴上因此a2=m0,b2=m2+4c2=m+m2+4=m2+m+4双曲线的离心率为,可得c2=5a2,所以m2+m+4=5m,解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程,在已知离心率的情况下求参数的值,着重考查了双曲线的概念与性质,属于基础题9(5分)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是考点:平面向量数量积的运算4
15、664233专题:计算题分析:根据所给的图形,把已知向量用矩形的边所在的向量来表示,做出要用的向量的模长,表示出要求得向量的数量积,注意应用垂直的向量数量积等于0,得到结果解答:解:,=|=,|=1,|=1,=()()=2+2=,故答案为:点评:本题考查平面向量的数量积的运算本题解题的关键是把要用的向量表示成已知向量的和的形式,本题是一个中档题目10(5分)设f(x)是定义在R上且周期为2的函数,在区间1,1上,f(x)=其中a,bR若=,则a+3b的值为10考点:函数的周期性;分段函数的解析式求法及其图象的作法4664233专题:计算题分析:由于f(x)是定义在R上且周期为2的函数,由f(x
16、)的表达式可得f()=f()=1a=f()=;再由f(1)=f(1)得2a+b=0,解关于a,b的方程组可得到a,b的值,从而得到答案解答:解:f(x)是定义在R上且周期为2的函数,f(x)=,f()=f()=1a,f()=;又=,1a=又f(1)=f(1),2a+b=0,由解得a=2,b=4;a+3b=10故答案为:10点评:本题考查函数的周期性,考查分段函数的解析式的求法,着重考查方程组思想,得到a,b的方程组并求得a,b的值是关键,属于中档题11(5分)设a为锐角,若cos(a+)=,则sin(2a+)的值为考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍
17、角的正弦4664233专题:计算题;压轴题分析:根据a为锐角,cos(a+)=为正数,可得a+也是锐角,利用平方关系可得sin(a+)=接下来配角,得到cosa=,sina=,再用二倍角公式可得sin2a=,cos2a=,最后用两角和的正弦公式得到sin(2a+)=sin2acos+cosasin=解答:解:a为锐角,cos(a+)=,a+也是锐角,且sin(a+)=cosa=cos(a+)=cos+sin=sina=sin(a+)=cossin=由此可得sin2a=2sinacosa=,cos2a=cos2asin2a=又sin=sin()=,cos=cos()=sin(2a+)=sin2a
18、cos+cosasin=+=故答案为:点评:本题要我们在已知锐角a+的余弦值的情况下,求2a+的正弦值,着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函数中的恒等变换应用,属于中档题12(5分)在平面直角坐标系xOy中,圆C的方程为x2+y28x+15=0,若直线y=kx2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是考点:圆与圆的位置关系及其判定;直线与圆的位置关系4664233专题:计算题分析:由于圆C的方程为(x4)2+y2=1,由题意可知,只需(x4)2+y2=4与直线y=kx2有公共点即可解答:解:圆C的方程为x2+y28x+
19、15=0,整理得:(x4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,只需圆C:(x4)2+y2=4与直线y=kx2有公共点即可设圆心C(4,0)到直线y=kx2的距离为d,则d=2,即3k24k,0kk的最大值是故答案为:点评:本题考查直线与圆的位置关系,将条件转化为“(x4)2+y2=4与直线y=kx2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题13(5分)已知函数f(x)=x2+ax+b(a,bR)的值域为0,+),若关于x的不等式f(x)c的解集为(m,m+6),则实数c的值为9考点:
20、一元二次不等式的应用4664233专题:计算题;压轴题分析:根据函数的值域求出a与b的关系,然后根据不等式的解集可得f(x)=c的两个根为m,m+6,最后利用根与系数的关系建立等式,解之即可解答:解:函数f(x)=x2+ax+b(a,bR)的值域为0,+),f(x)=x2+ax+b=0只有一个根,即=a24b=0则b=不等式f(x)c的解集为(m,m+6),即为x2+ax+c解集为(m,m+6),则x2+ax+c=0的两个根为m,m+6|m+6m|=6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于中档题14(5分)已
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏 高考 数学试卷 规范 标准答案 以及 解析
限制150内