《导数定义与极限》PPT课件.ppt
《《导数定义与极限》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《导数定义与极限》PPT课件.ppt(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、上一页下一页导数与微分习题课导数与微分习题课 1. 导数(含左导数、右导数)和微分的定义及其几何意义.axafxfafax)()(lim)(xafxafafx)()(lim)(0上一页下一页导数与微分习题课导数与微分习题课 练习练习1 设函数设函数)(xf在0 x处可导, 试用导数)(0 xf 表示下列极限: (2)hhxfhxfh)2()3(lim000(3))(1lim00 xfnxfnnhxfhxfh)()3(lim000(1)(4)000)()(lim0 xxxfxxxfxx (1) 导数定义与极限导数定义与极限上一页下一页导数与微分习题课导数与微分习题课 解(解(1)原式)原式hxf
2、hxfh3)()3( 3lim000(2) 原式原式hxfhxfxfhxfh)()2()()3(lim00000分项hxfhxfhxfhxfh2)()2( 23)()3( 3lim00000)(30 xf )(20 xf )(50 xf axafxfafax)()(lim)(xafxafafx)()(lim)(0).(30 xf 上一页下一页导数与微分习题课导数与微分习题课处可导, 试用导数(3))(1lim00 xfnxfnnnxfnxfn1)(1lim00axafxfafax)()(lim)(xafxafafx)()(lim)(0)(0 xf 上一页下一页导数与微分习题课导数与微分习题课处
3、可导, 试用导数 解(解(4)原式)原式)()(000 xfxxf0000000)()()()(lim0 xxxfxfxxxxfxxxfxxaxafxfafax)()(lim)(xafxafafx)()(lim)(0上一页下一页导数与微分习题课导数与微分习题课处可导, 试用导数 (2)用导数定义求导用导数定义求导 练习练习2 设函数设函数1sin, 0,( )0, 0,xxf xxx问常数问常数在什么条件下在什么条件下, 下列结论成立:下列结论成立: (1))(xf在点在点0处连续处连续, 但不可导但不可导.(b)在点在点0处可导;处可导;)(xf(a))(xf 在点在点0处连续处连续.(c)
4、上一页下一页导数与微分习题课导数与微分习题课处可导, 试用导数 (2)用导数定义求导用导数定义求导 解解 (a)001sin( )(0)(0)limlimxxxf xfxfxx100,1,1limsin1xxx不存在,1(0)0;f时,00( )(0)(0)limlim00 xxf xffx上一页下一页导数与微分习题课导数与微分习题课 解(解(b)01limsin0(0),xxx时10)(xf在点在点0处连续处连续, 但不可导但不可导.注意到注意到:上一页下一页导数与微分习题课导数与微分习题课处可导, 试用导数 (2)用导数定义求导用导数定义求导12111sincos, 0,( )0, 0,x
5、xxfxxxx0 x 当时,xx1cos2xxxf1sin)(1 解解 (c)0)0(1f0 x 当时,类似于类似于(a )可解得可解得时连续在时,当0)(2xxf上一页下一页导数与微分习题课导数与微分习题课处可导, 试用导数 (2)用导数定义求导用导数定义求导 练习练习2 设函数设函数xxxxf22)(问问下列结论成立下列结论成立? (2))(xf在点在点0处连续处连续? (a)在点在点0处可导处可导?)(xf(b)?)0( f(c)显然连续显然连续上一页下一页导数与微分习题课导数与微分习题课xxxxxxf 0 , 0, 0 2)(2 解(解(b)0)0(fxxfxfxffxx)(lim0)
6、0()(lim)0(0000lim2lim0220 xxxxxxxxfxfxffxx)(lim0)0()(lim)0(00003lim2lim0220 xxxxxx0)0( f上一页下一页导数与微分习题课导数与微分习题课xxxxxf 0 ,3, 0 )(22 解(解(c)xxfxfxffxx)(lim0)0()(lim)0(0000 22lim0 xxxxxfxfxffxx)(lim0)0()(lim)0(0000 66lim0 xxx不存在)0(f 0)0(, 0 ,6, 0 2)(fxxxxxf且上一页下一页导数与微分习题课导数与微分习题课处可导, 试用导数 (2)用导数定义求导用导数定义
7、求导 练习练习2 设函数设函数( )2005xx且在处连续。(3)( )2005f xx 证明在处可导。( )(2005) ( )f xxx设,1( )(2005) ( )fxxxx证法((2005)2005)0(2005)2005)f (2005( )(2005)(2005)lim2005xf xffx2证法200520042005( )(2005) ( )limlimlim( )20052005xxxf xxxxxx2005lim( )(2005)xx( )2005xx在处连续。2005(2005)lim( )(2005)xfx上一页下一页导数与微分习题课导数与微分习题课 (3) 导数的四
8、则运算导数的四则运算 练习练习3 求下列求下列函数的导数函数的导数:;1sinln)()(32xxxfa;cossintan1coscot1sin)()(22xxxxxxxfb上一页下一页导数与微分习题课导数与微分习题课 (3) 导数的四则运算导数的四则运算)1ln() 1ln(sinln31)() 1 (xxxxf 解(解(a)1111sincos31)(xxxxxf上一页下一页导数与微分习题课导数与微分习题课 (3) 导数的四则运算导数的四则运算;cossincossincoscossinsin)(33xxxxxxxxxf;cossincossincossin33xxxxxx1cossin
9、coscossinsin22xxxxxx0) 1 ()(xf 解(解(b)上一页下一页导数与微分习题课导数与微分习题课处可导, 试用导数 (4)复合函数求导复合函数求导 练习练习4 求下列求下列函数的导数函数的导数: (a)设)设21)(xxxf求求)(sintf (b)设)设, 1, 0,log)(aatatgat求求,1ag)(2xg(c)设设f可导可导, 求求)(cos)(sin22xfxfy的导数的导数.(d) 设设f 、g可导且可导且f 0证明:证明:)(ln)()()()()()()()(xfxgxfxgxfxfxfxgxg 上一页下一页导数与微分习题课导数与微分习题课 解(解(a
10、),)1 (1)1 ()2(1)(222222xxxxxxxftttttftx42222sincossin1sin1 sin1)(sin 上一页下一页导数与微分习题课导数与微分习题课 解(解(b)elog1logln)(atattataatgelog1logln111aaaaaaaaaag)lnelog(1aaaaaelog1logln)(22222axaxxaxaaxgelog1logln222aaxxxaa? )(2xg上一页下一页导数与微分习题课导数与微分习题课 解(解(c) )()(cos)(sin2xfxfxf.)sincos2)(cos2xxxf)()(cos)(sin2 )(si
11、n2xfxfxfxf)sincos2)(cos )(cos22xxxfxf )(cos )(sin22xfxfy上一页下一页导数与微分习题课导数与微分习题课证(证(d) .)()(ln)()(xfxgxgexf)(ln)()()()()(ln)(xfxgxfxfxgexfxg)(ln)()()()()()(xfxgxfxfxgxfxg上一页下一页导数与微分习题课导数与微分习题课处可导, 试用导数 (5)隐函数、参变量隐函数、参变量求导求导 练习练习5 求下列求下列函数的导数函数的导数: (a)设)设yxyyx 求,022xyyx(b)设)设yyxxy求,2222,1,2dxyd tytx 求设
12、(c) 2?321dxd xy dyydyy (d)上一页下一页导数与微分习题课导数与微分习题课 解(解(a) ,求导两边对x,0ln22ln2yyyxyyx2ln22ln2yxxyy2222ln22ln212ln22ln22ln2yyxyxxyyxyy .2ln22ln2 yxyyyx代入将上一页下一页导数与微分习题课导数与微分习题课 解(解(b) xyyx, 换底换底yxxylnlnee 对对x求导得求导得yyxyxyxyyxxylnelnelnlnxyxxyxyyyxyxxxyxyyyxyyxxyyx11lnlnln)(ln化简用xyyx 上一页下一页导数与微分习题课导数与微分习题课 解
13、(解(c) (法一)(法一)txydxdytt1 221xd xdxdyydy 解(解(c) (法二)(法二)1, 0, 1 ttttxytxy 33221txxyxydxydttttt 上一页下一页导数与微分习题课导数与微分习题课 解(解(d)221xd xdxdyydy21yyy 3yy 上一页下一页导数与微分习题课导数与微分习题课处可导, 试用导数 (6) 高阶导数高阶导数 aaa nxnxln1xyyx nxx nxx nn2coscos;2sinsin2xnxee nm nm mnm xnmmmx nmnm0!113 nnnxnx !11ln41 10!115nnnanbaxanba
14、x 上一页下一页导数与微分习题课导数与微分习题课处可导, 试用导数 练习练习6 求下列求下列函数的导数函数的导数: (a)设)设xyyxnyxxy求44cossin(b)设)设 nyanxfaxfy求阶导数具有,0)(),(nyxxy求8212(c)设)设上一页下一页导数与微分习题课导数与微分习题课 解(解(a) ,xfayaxfaynnn,2axfay 上一页下一页导数与微分习题课导数与微分习题课 解(解(b) 2222cos122cos1xxy 24cos4)(14nxyaxfaaxfnnannn由xx4cos41432cos22412上一页下一页导数与微分习题课导数与微分习题课 解(解(
15、c) nnxxy241 nxx214161 nnxx214161 112141!161nnnxxn上一页下一页导数与微分习题课导数与微分习题课zD+eCsacZEOIPp&Wr182aZBCj7uG136zL)Uzy8V!RVr%QhXZOSr+&GoGN1)&hnCi!Tl#ZID2wbE1&LG7Fr%CKHVIuHCGcJqSb-GqWF2VBUgyb#h$wDTTbDFY-IpYLx#y&XWzzv*I70)#)bXp7xWC0HOO(ZU8gAm46WFONwL%X19TE841IxdsQVhYYIE2v9A*VypWeE8GGQL)liyFb#mnDbD7dezyA)iURSvtk
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数定义与极限 导数 定义 极限 PPT 课件
限制150内