高中一年级数学选修3第一课时课件.ppt
《高中一年级数学选修3第一课时课件.ppt》由会员分享,可在线阅读,更多相关《高中一年级数学选修3第一课时课件.ppt(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.3 1.3 二项式定理二项式定理1.3.1 1.3.1 二项式定理二项式定理引入课题引入课题今天是星期一,试问今天是星期一,试问220072007天之后是星期天之后是星期几呢?几呢?引入课题引入课题 1.( 1.(ab) )2 2和和( (ab) )3 3展开后分别等于展开后分别等于什么?什么? (ab)2 2a2 22 2abb2 2,(ab)3 3a3 33 3a2 2b3 3ab2 2b3 3. 2. 2.对于对于ab,( (ab b) )2 2,( (ab b) )3 3,( (ab b) )4 4,( (ab b) )5 5等代数式,数学上统等代数式,数学上统称为称为二项式二项式
2、,其一般形式为,其一般形式为( (ab b) )n n(nNnN*). .由于在许多代数问题中需要由于在许多代数问题中需要将它展开,因此,研究将它展开,因此,研究( (ab b) )n n展开后的展开后的表达式的一般结构,就是一个具有重要表达式的一般结构,就是一个具有重要意义的课题意义的课题. .探究(一):探究(一):二项式定理二项式定理 问题问题1 1:将将( (ab b) )2 2( (ab b)()(ab b) )按多按多项式乘法法则展开,每个括号内各取一项式乘法法则展开,每个括号内各取一个数相乘得到展开式中的一项,根据分个数相乘得到展开式中的一项,根据分步计数原理,在合并同类项之前共
3、有多步计数原理,在合并同类项之前共有多少项?其中不取少项?其中不取b b,取一个,取一个b b和一个和一个a,取,取二个二个b b的项数用组合数分别怎样表示?由的项数用组合数分别怎样表示?由此可得此可得( (ab b) )2 2的展开式是什么?的展开式是什么?20212 2222()abC aC abC b+=+问题问题2 2:类似地,将类似地,将( (ab b) )3 3( (ab b) ) ( (ab b)()(ab b) )按多项式乘法法则按多项式乘法法则展开,在合并同类项之前共有多少项?展开,在合并同类项之前共有多少项?其中不取其中不取b b,取一个,取一个b b和二个和二个a,取二个
4、,取二个b b和一个和一个a,取三个,取三个b b的项数用组合数分别的项数用组合数分别怎样表示?由此可得怎样表示?由此可得( (ab b) )3 3的展开式是的展开式是什么?什么?3031222333333()abC aC a bC abC b+=+问题问题3 3:在在( (ab b) )4 4( (ab b)()(ab b)()(ab b)()(ab b) )的展开式中,有哪几种形式的的展开式中,有哪几种形式的项?合并同类项之后各项的系数分别是项?合并同类项之后各项的系数分别是什么组合数?由此可得什么组合数?由此可得( (ab b) )4 4的展开式的展开式是什么?是什么?40 41 32
5、2 2334 444444()abC aC ab C abC abC b+=+问题问题4 4:根据归纳推理,你能猜测出根据归纳推理,你能猜测出 ( (ab b) )n n(nN(nN*) )的展开式是什么吗?的展开式是什么吗? 01122 211()nnnnnnnnnnnnnabC aC abC abCabC b-+=+L问题问题5 5:如何证明这个猜想?如何证明这个猜想? (a+b)n是n个(a+b)相乘, 每个(a+b)在相乘时有两种选择,选a或b. 而且每个(a+b)中的a或b选定后才能得到展开式的一项。对于每一项an-kbk ,它是由n-k个(a+b)选了a, k个(a+b)选了b得到
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中 一年级 数学 选修 第一 课时 课件
限制150内