2022年最全最实用的高等数学公式大全 .pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年最全最实用的高等数学公式大全 .pdf》由会员分享,可在线阅读,更多相关《2022年最全最实用的高等数学公式大全 .pdf(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载高数工本阶段公司空间解析几何和向量代数:。代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。与是向量在轴上的投影:点的距离:空间,cos)(.sin,cos,cosPrPr)(Pr,cosPr)()()(2222222212121221221221cbacccbbbaaacbacbarwvbacbbbaaakjibacbbbaaababababababababaajajaajuABABABjzzyyxxMMdzyxzyxzyxzyxzyxzyxzyxzzyyxxzzyyxxuu精选学习资料 - - - - - - - - - 名师归纳
2、总结 - - - - - - -第 1 页,共 9 页学习必备欢迎下载(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,22211;,1302),(,0)()()(1222222222222222222220000002220000000000czbyaxczbyaxqpzqypxczbyaxptzzntyymtxxpnmstpzznyymxxCBADCzByAxdczbyaxDCzByAxzyxMCBAnzzCyyBxxA多元函数微分法及应
3、用zyzxyxyxyxyxFFyzFFxzzyxFdxdyFFyFFxdxydFFdxdyyxFdyyvdxxvdvdyyudxxuduyxvvyxuuxvvzxuuzxzyxvyxufztvvztuuzdtdztvtufzyyxfxyxfdzzdzzudyyudxxududyyzdxxzdz,隐函数,隐函数隐函数的求导公式:时,当:多元复合函数的求导法全微分的近似计算:全微分:0),()()(0),(),(),(),(),()(),(),(),(22精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 9 页学习必备欢迎下载),(),(1)
4、,(),(1),(),(1),(),(1),(),(0),(0),(yuGFJyvvyGFJyuxuGFJxvvxGFJxuGGFFvGuGvFuFvuGFJvuyxGvuyxFvuvu隐函数方程组:微分法在几何上的应用:),(),(),(30)(,()(,()(,(2),(),(),(1),(0),(,0),(0),(0)()()()()()(),()()()(000000000000000000000000000000000000000000000000000zyxFzzzyxFyyzyxFxxzzzyxFyyzyxFxxzyxFzyxFzyxFzyxFnzyxMzyxFGGFFGGFFG
5、GFFTzyxGzyxFzztyytxxtMtzztyytxxzyxMtztytxzyxzyxzyxyxyxxzxzzyzy、过此点的法线方程:、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线方向导数与梯度:上的投影。在是单位向量。方向上的,为,其中:它与方向导数的关系是的梯度:在一点函数的转角。轴到方向为其中的方向导数为:沿任一方向在一点函数lyxflfljieeyxflfjyfixfyxfyxpyxfzlxyfxflflyxpyxfz),(gradsincos),(grad),(grad),(),(sincos)
6、,(),(多元函数的极值及其求法:不确定时值时,无极为极小值为极大值时,则:,令:设,00),( ,0),( ,00),(,),(,),(0),(),(22000020000000000BACBACyxAyxABACCyxfByxfAyxfyxfyxfyyxyxxyx精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 9 页学习必备欢迎下载重积分及其应用:DzDyDxzyxDyDxDDyDxDDDayxxdyxfaFayxydyxfFayxxdyxfFFFFFaaMzxoydyxxIydyxyIxdyxdyxyMMydyxdyxxMMxdx
7、dyyzxzAyxfzrdrdrrfdxdyyxf23222232222322222D22)(),()(),()(),(,)0(),0,0(),(,),(),(),(,),(),(1),()sin,cos(),(,其中:的引力:轴上质点平面)对平面薄片(位于轴对于轴对于平面薄片的转动惯量:平面薄片的重心:的面积曲面柱面坐标和球面坐标:dvyxIdvzxIdvzyIdvxMdvzMzdvyMydvxMxdrrrFddddrdrrFdxdydzzyxfddrdrdrdrrddvrzryrxzrrfzrFdzrdrdzrFdxdydzzyxfzzryrxzyxr)()()(1,1,1sin),(si
8、n),(),(sinsincossinsincossin),sin,cos(),(,),(),(,sincos222222200),(0222,转动惯量:,其中重心:,球面坐标:其中:柱面坐标:曲线积分:)()()()()(),(),(),(,)()(),(22tytxdtttttfdsyxfttytxLLyxfL特殊情况:则:的参数方程为:上连续,在设长的曲线积分):第一类曲线积分(对弧精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 9 页学习必备欢迎下载。,通常设的全微分,其中:才是二元函数时,在:二元函数的全微分求积注意方向相反!
9、减去对此奇点的积分,应。注意奇点,如,且内具有一阶连续偏导数在,、是一个单连通区域;、无关的条件:平面上曲线积分与路径的面积:时,得到,即:当格林公式:格林公式:的方向角。上积分起止点处切向量分别为和,其中系:两类曲线积分之间的关,则:的参数方程为设标的曲线积分):第二类曲线积分(对坐0),(),(),(),()0,0(),(),(21212,)()()coscos()()(),()()(),(),(),()()(00),(),(00yxdyyxQdxyxPyxuyxuQdyPdxyPxQyPxQGyxQyxPGydxxdydxdyADyPxQxQyPQdyPdxdxdyyPxQQdyPdxd
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年最全最实用的高等数学公式大全 2022 年最全最 实用 高等数学 公式 大全
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内