2022年高二数学立体几何大题的八大解题技巧.docx
《2022年高二数学立体几何大题的八大解题技巧.docx》由会员分享,可在线阅读,更多相关《2022年高二数学立体几何大题的八大解题技巧.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年高二数学立体几何大题的八大解题技巧 常常在做题后进行肯定的“反思”,思索一下本题所用的基础学问,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。我在这整理了相关资料,希望能帮助到您。 立体几何大题的八大解题技巧 平行、垂直位置关系的论证的策略 (1)由已知想性质,由求证想判定,即分析法与综合法相结合找寻证题思路。 (2)利用题设条件的性质适当添加协助线(或面)是解题的常用方法之一。 (3)三垂线定理及其逆定理在高考题中运用的频率最高,在证明线线垂直时应优先考虑。 2空间角的计算方法与技巧 主要步骤:一作、二证、三算;若用
2、向量,那就是一证、二算。 (1)两条异面直线所成的角平移法:补形法:向量法: (2)直线和平面所成的角 作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。 用公式计算。 (3)二面角 平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。 平面角的计算法: (i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。 3空间距离的计算方法与技巧 (1)求点到直线的距离:常常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。 (2)求两条异面直线
3、间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能干脆作出公垂线的状况下,可转化为线面距离求解(这种状况高考不做要求)。 (3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体 积法”干脆求距离;有时干脆利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距 离”。求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。 4熟记一些常用的小结论 诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。弄清晰棱锥的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年高 数学 立体几何 八大 解题 技巧
限制150内