《2022年高考数学必考知识归纳整理.docx》由会员分享,可在线阅读,更多相关《2022年高考数学必考知识归纳整理.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年高考数学必考知识归纳整理 现在是进行惊慌的一轮复习中,高考数学学问点有哪些呢?那么数学怎么复习?下面是我为大家整理的关于高考数学必考学问归纳整理,希望对您有所帮助。欢迎大家阅读参考学习! 高考数学重要学问点整理 一、求动点的轨迹方程的基本步骤 建立适当的坐标系,设出动点M的坐标; 写出点M的集合; 列出方程=0; 化简方程为最简形式; 检验。 二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。 直译法:干脆将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。 定义法:假如能够确定动点的轨迹满意某
2、种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。 相关点法:用动点Q的坐标_,y表示相关点P的坐标_0、y0,然后代入点P的坐标(_0,y0)所满意的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。 参数法:当动点坐标_、y之间的干脆关系难以找到时,往往先找寻_、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。 交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。 _直译法:求动点轨迹方程的一般步骤 建系建立适当的坐标系;
3、 设点设轨迹上的任一点P(_,y); 列式列出动点p所满意的关系式; 代换依条件的特点,选用距离公式、斜率公式等将其转化为关于_,Y的方程式,并化简; 证明证明所求方程即为符合条件的动点轨迹方程。 高考数学必考学问 第一、高考数学中有函数、数列、三角函数、平面对量、不等式、立体几何等九大章节。 主要是考函数和导数,这是我们整个中学阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;其次是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。 其次、平面对量和三角
4、函数。 重点考察三个方面:一个是划减与求值,第一,重点驾驭公式,重点驾驭五组基本公式。其次,是三角函数的图像和性质,这里重点驾驭正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。 第三、数列。 数列这个板块,重点考两个方面:一个通项;一个是求和。 第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。 第五、概率和统计。 这一板块主要是属于数学应用问题的范畴,当然应当驾驭下面几个方面,第一等可能的概率,其次事务,第三是独立事务,还有独立重复事务发生的概率。 第六、解析几何。 这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我
5、总结下面五类常考的题型,包括: 第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应当驾驭它的通法; 其次类我们所讲的动点问题; 第三类是弦长问题; 第四类是对称问题,这也是2022年高考已经考过的一点; 第五类重点问题,这类题时往往觉得有思路,但是没有答案, 当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的缘由,往往有这个缘由,我们所选方法不是很恰当,因此,在这一章里我们要驾驭比较好的算法,来提高我们做题的精确度,这是我们所讲的第六大板块。 第七、押轴题。 考生在备考复习时,应当重点不等式计算的方法,虽然说难度比较大,我建议考生,实行分部得分整个试卷不要留空白。这是高考所
6、考的七大板块核心的考点。 高三数学学问点总结 随机抽样 简介 (抽签法、随机样数表法)经常用于总体个数较少时,它的主要特征是从总体中逐个抽取; 优点:操作简便易行 缺点:总体过大不易实行 方法 (1)抽签法 一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌匀称后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。 (抽签法简洁易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌匀称”就比较困难,用抽签法产生的样本代表性差的可能性很大) (2)随机数法 随机抽样中,另一个常常被采纳的方法是随机数法,即利用随机数表、随机数骰子或计算
7、机产生的随机数进行抽样。 分层抽样 简介 分层抽样主要特征分层按比例抽样,主要运用于总体中的个体有明显差异。共同点:每个个体被抽到的概率都相等N/M。 定义 一般地,在抽样时,将总体分成互不交叉的层,然后根据肯定的比例,从各层独立地抽取肯定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。 整群抽样 定义 什么是整群抽样 整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。 应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。 优缺点 整群抽样的优点是实施便利、节约经费
8、; 整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简洁随机抽样。 实施步骤 先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内全部个体或单元均进行调查。抽样过程可分为以下几个步骤: 一、确定分群的标注 二、总体(N)分成若干个互不重叠的部分,每个部分为一群。 三、据各样本量,确定应当抽取的群数。 四、采纳简洁随机抽样或系统抽样方法,从i群中抽取确定的群数。 例如,调查中学生患近视眼的状况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。 与分层抽样的区分 整群抽样与分层抽样在形式上有相像之处,但事实上差别很大。 分层抽样要求各层之
9、间的差异很大,层内个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群内个体或单元差异大; 分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。 系统抽样 定义 当总体中的个体数较多时,采纳简洁随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后根据预先定出的规则,从每一部分抽取一个个体,得到所须要的样本,这种抽样叫做系统抽样。 步骤 一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样: (1)先将总体的N个个体编号。有时可干脆利用个体自身所带的号码,如学号、准考证号、门牌号等; (2)确定分段间隔k,对编号进行分段。当N/n(n是样本容量)是整数时,取k=N/n; (3)在第一段用简洁随机抽样确定第一个个体编号l(lk); (4)根据肯定的规则抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获得整个样本。 高考数学必考学问归纳整理第8页 共8页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页
限制150内