2022年平面直角坐标系的知识点归纳总结 .pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年平面直角坐标系的知识点归纳总结 .pdf》由会员分享,可在线阅读,更多相关《2022年平面直角坐标系的知识点归纳总结 .pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、平面直角坐标系的知识点归纳总结1. 平面直角坐标系的定义 : 平面内画两条 _ 的数轴组成平面直角坐标系。 水平的数轴为_,习惯上取向 _为正方向;竖直的数轴为 _,取向_为正方向;它们的公共原点 O为直角坐标系的。两坐标轴把平面分成 _,坐标轴上的点不属于 _。注意:同一平面、互相垂直、公共原点、数轴。2. 点的坐标 :坐标平面内的点可以用一对表示,这个叫坐标。表示方法为(a ,b) 。a 是点对应轴上的数值,表示点的坐标; b 是点对应轴上的数值,表示点的坐标。点(a ,b)与点( b,a)表示同一个点时, a b;当 a b时,点(a ,b)与点( b,a)表示不同的点。3. 坐标系内点
2、的坐标特点 :小结: (1)点 P(yx,)所在的象限横、纵坐标 x、 y的取值的正负性;(2)点 P(yx,)所在的数轴横、纵坐标 x、 y 中必有一数为零;练 1、下列说法正确的是()A平面内,两条互相垂直的直线构成数轴 B、坐标原点不属于任何象限。C.x轴上点必是纵坐标为0,横坐标不为0 D、坐标为 (3, 4)与( 4,3)表示同一个点。练 2、判断题坐标轴上点 P(x,y)连线平行于坐标轴的点点 P(x ,y)在各象限的坐标特点象限角平分线上的点X 轴Y 轴原点平行 X 轴平行 Y 轴第一象限第二象限第三象限第四象限第一、三象限第二、四象限精选学习资料 - - - - - - - -
3、 - 名师归纳总结 - - - - - - -第 1 页,共 7 页(1)坐标平面上的点与全体实数一一对应()(2)横坐标为0 的点在轴上()(3)纵坐标小于0的点一定在轴下方()(4)若直线轴,则上的点横坐标一定相同()(5)若,则点 P()在第二或第三象限()(6)若,则点 P()在轴或第一、三象限()练 3、已知坐标平面内点M(a,b) 在第二象限,那么点N(b, a) 在()A第一象限 B第二象限 C第三象限 D第四象限练 4、在平面直角坐标系中,点(-1 ,m2+1)一定在()A、第一象限 B、第二象限 C 、第三象限 D、第四象限练 5、点 E与点 F 的纵坐标相同,横坐标不同,则
4、直线EF与 y 轴的关系是()A相交 B垂直 C平行 D以上都不正确练 6、若点 A(m,n), 点 B(n,m)表示同一点 , 则这一点一定在( )A第二、四象限的角平分线上 B 第一、三象限的角平分线上C平行于 X轴的直线上 D平行于 Y轴的直线上练 7、点 P(3a-9 ,a+1)在第二象限,则a 的取值范围为_练 8、如果点M (3a-9,1-a)是第三象限的整数点,则M的坐标为 _;4、平面直角坐标系中的距离(1)点到坐标轴的距离点 P(ba,)到横轴的距离 = ,点 P(ba,)到纵轴的距离 = ,注:1、点到横轴的距离等于()坐标的() ,点到纵轴的距离等于()坐标的() ;2、
5、坐标转化为距离时要加绝对值;距离转化为坐标时要分情况,考虑正负。( 2) 若 P(a,b) ,Q(a,n) ,则 PQ=() ,PQ 的中点坐标为() ;若 P(a, b) ,Q(m,b) ,则 PQ=() , PQ 的中点坐标为() ;横坐标相等的点在同一条平行于() 的直线上, 垂直方向两点间的距离等于() ;纵坐标相等的点在同一条平行于()的直线上,水平方向两点间的距离等于() 。(3) 若 P (a, b) , Q (m, n) , 则点 P 与点 Q 的水平距离 =(), 点 P 与点 Q 的垂直距离 ()点 P 与点 Q 的距离 PQ() ;PQ 的中点坐标为()(4)点 P(a,
6、b)与原点的距离= ,练 1、点 E(a,b)到 x 轴的距离是4,到 y 轴距离是3,则有()Aa=3, b=4 Ba=3,b=4 Ca=4, b=3 Da=4,b=3 练 2、点 A 在第二象限 ,它到x轴 、y轴的距离分别是 3、5,则坐标是已知点 M(2m+1,3m-5)到 x 轴的距离是它到y 轴距离的2 倍, 则 m= 。5、坐标与平移P(ba,)xyOP(x, y)P ()P ()P ()P ()向上平移a 个单位向下平移a 个单位向右平移a 个单位向左平移a 个单位精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 7 页注
7、:上加下减,右加左减。练 1、在平面直角坐标系中,有一点P(-4,2) ,若将 P: (1) 向左平移 2 个单位长度,所得点的坐标为_ (2) 向右平移 3 个单位长度,所得点的坐标为_ (3) 向下平移 4 个单位长度,所得点的坐标为_ (4) 先向右平移 5 个单位长度,再向上平移3 个单位长度,所得坐标为 _。练 2、线段 CD是由线段AB平移得到的 , 点 A( 1,4)的对应点为C(4,7) ,则点 B(-4, 1)的对应点 D的坐标为()A (2,9) B (5,3) C (1,2) D ( 9 , 4 )练 3、 将点 P(-3 , y) 向下平移3 个单位,向左平移2 个单位
8、后得到点Q(x, -1) , 则 xy=_ 。6、坐标与对称a)点 P),(nm关于 x轴的对称点为 P1 () , 即 () 不变,纵坐标() ;b)点 P),(nm关于 y 轴的对称点为 P2() , 即()不变, ()互为相反数;c)点 P),(nm关于原点的对称点为),(3nmP,即横、纵坐标都() ;关于 x 轴对称关于 y 轴对称关于原点对称练 1、已知点 Myx,与点 N3,2关于 x轴对称,则_yx。练 2、已知点 P3,3ba与点 Qba2, 5关于 x轴对称,_ ba。练 3、将三角形ABC的各顶点的横坐标都乘以1,则所得三角形与三角形ABC的关系()A关于x轴对称B关于y
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年平面直角坐标系的知识点归纳总结 2022 平面 直角 坐标系 知识点 归纳 总结
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内