2021高三数学北师大版(文)一轮教师用书:第8章 第5节 空间几何体的表面积与体积 .doc
《2021高三数学北师大版(文)一轮教师用书:第8章 第5节 空间几何体的表面积与体积 .doc》由会员分享,可在线阅读,更多相关《2021高三数学北师大版(文)一轮教师用书:第8章 第5节 空间几何体的表面积与体积 .doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第五节空间几何体的表面积与体积最新考纲了解球、棱柱、棱锥、台的表面积和体积的计算公式(对应学生用书第135页)1多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和2圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧2rlS圆锥侧rlS圆台侧(r1r2)l三者关系S圆柱侧2rlS圆台侧(rr)lS圆锥侧rl3.柱、锥、台和球的表面积和体积名称几何体表面积体积柱体(棱柱和圆柱)S表面积S侧2S底VSh锥体(棱锥和圆锥)S表面积S侧S底VSh台体(棱台和圆台)S表面积S侧S上S下V(S上S下)h球S4R
2、2VR31正四面体的表面积与体积棱长为a的正四面体,其表面积为a2,体积为a3.2几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,若球为正方体的外接球,则2Ra;若球为正方体的内切球,则2Ra;若球与正方体的各棱相切,则2Ra.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R.(3)正四面体的外接球与内切球的半径之比为31,棱长为a的正四面体,其内切球半径R内a,外接球半径R外a.一、思考辨析(正确的打“”,错误的打“”)(1)锥体的体积等于底面面积与高之积()(2)球的体积之比等于半径比的平方()(3)台体的体积可转化为两个锥体的体积之差()(4
3、)已知球O的半径为R,其内接正方体的边长为a,则Ra.()答案(1)(2)(3)(4)二、教材改编1一个球的表面积是16,那么这个球的体积为()A.B.C16D24B设球的半径为R,由题意得4R216,解得R2,所以这个球的体积为VR3,故选B.2已知圆锥的表面积等于12 cm2,其侧面展开图是一个半圆,则底面圆的半径为()A1 cmB2 cmC3 cmD. cmB设圆锥的底面半径为r,母线长为l,由题意知,2rl,得l2r.则S表r2rlr2r2r3r212.解得r2(cm),故选B.3某几何体的三视图如图所示,则该几何体的体积为()A6B3 C2D3B由三视图可知,该几何体是一个直三棱柱,
4、其底面为左视图,该左视图是底边为2,高为的三角形,主视图的长为三棱柱的高,故h3,所以几何体的体积VSh33.4如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为_147设长方体的相邻三条棱长分别为a,b,c,它截出棱锥的体积为V1abcabc,剩下的几何体的体积V2abcabcabc,所以V1V2147.(对应学生用书第136页)考点1空间几何体的表面积求解几何体表面积的类型及求法求多面体的表面积先求各个面的面积,再相加即可求旋转体的表面积可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中
5、的边长关系求不规则几何体的表面积时通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积(1)若某空间几何体的三视图如图所示,则该几何体的表面积是()A48B48C482D482(2)(2018全国卷)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A12B12C8D10(1)A(2)B(1)该几何体是正四棱柱挖去了一个半球,正四棱柱的底面是正方形(边长为2),高为5,半球的半径是1,那么该几何体的表面积为S2224251221248,故选A.(
6、2)因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为2,底面圆的直径为2,所以该圆柱的表面积为2()22212.解答本题T(1)时易误认为几何体的上底面不存在,导致计算错误1.一个四面体的三视图如图所示,则该四面体的表面积是()A1B12C2D2C由题意知题中的几何图形就是如图所示的四面体,其中ABADCBCD,BD2,且平面ABD平面CBD.所以ABD与CBD都是等腰直角三角形,而ABC与CAD都是边长是的等边三角形所以表面积是2()222,故选C.2(2016全国卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A18
7、36B5418C90D81B由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则表面积为(333633)25418.故选B.考点2空间几何体的体积求体积的常用方法直接法对于规则的几何体,利用相关公式直接计算割补法首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算等体积法选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换直接法求体积(1)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()
8、A.1B.3C.1D.3(2)(2018天津高考)如图,已知正方体ABCDA1B1C1D1的棱长为1,则四棱锥A1BB1D1D的体积为_(1)A(2)(1)由三视图可知该几何体是由底面半径为1,高为3的半个圆锥和三棱锥S ABC组成的,如图,三棱锥的高为3,底面ABC中,AB2,OC1,ABOC.故其体积V1232131.故选A.(2)四棱锥A1BB1D1D的底面BB1D1D为矩形,其面积S1,又四棱锥的高为点A1到平面BB1D1D的距离,即hA1C1,所以四棱锥的体积V.直接法求体积关键是求几何体的底面面积和高这两个量教师备选例题某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为
9、()A4B2C.DB由题意知该几何体的直观图如图所示,该几何体为圆柱的一部分,设底面扇形的圆心角为,由tan ,得,故底面面积为22,则该几何体的体积为32.割补法求体积(1)一题多解(2017全国卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A90B63C42D36(2)一题多解如图所示,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且ADE,BCF均为正三角形,EFAB,EF2,则该多面体的体积为()A.B.C.D.(1)B(2)A(1)法一:(割补法)如图所示,由几何体的三视图,可知该几何体
10、是一个圆柱被截去上面虚线部分所得将圆柱补全,并将圆柱体从点A处水平分成上下两部分由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的,所以该几何体的体积V32432663.故选B.法二:(估值法)由题意,知V圆柱V几何体V圆柱又V圆柱321090,45V几何体90.观察选项可知只有63符合故选B.(2)法一:如图所示,分别过A,B作EF的垂线,垂足分别为G,H,连接DG,CH,则原几何体分割为两个三棱锥和一个直三棱柱,因为三棱锥高为,直三棱柱高为1,AG,取AD的中点M,则MG,所以SAGD1,所以V12.法二:如图所示,取EF的中点P,则原几何体分割为两个三棱锥和一个四棱锥,易知
11、三棱锥PAED和三棱锥PBCF都是棱长为1的正四面体,四棱锥PABCD为棱长为1的正四棱锥所以V122.解答本例T(1)中,也可将两个相同的几何体对接为圆柱,圆柱体积的一半即为所求等体积法求体积(2019武汉模拟)如图,在棱长为1的正方体ABCDA1B1C1D1中,M为CD的中点,则三棱锥ABC1M的体积VABC1M()A.B.C.D.CVABC1MVC1ABMSABMC1CABADC1C,故选C.使用等体积法求体积时,一般是把三棱锥的底面转化到已知几何体的某一个面上教师备选例题如图所示,已知三棱柱ABCA1B1C1的所有棱长均为1,且AA1底面ABC,则三棱锥B1ABC1的体积为()A.B.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021高三数学北师大版文一轮教师用书:第8章 第5节空间几何体的表面积与体积 2021 数学 北师大 一轮 教师 空间 几何体 表面积 体积
限制150内