2022年多元函数微分学复习题及答案 .pdf
《2022年多元函数微分学复习题及答案 .pdf》由会员分享,可在线阅读,更多相关《2022年多元函数微分学复习题及答案 .pdf(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品资料欢迎下载第八章多元函数微分法及其应用复习题及解答一、选择题1.极限limxyx yxy00242= ( B )(A) 等于 0;(B)不存在;(C)等于12; (D)存在且不等于0 或12(提示:令22yk x)2、设函数fx yxyyxxyxy( , )sinsin11000,则极限lim( , )xyf x y00= ( C )(A) 不存在;(B) 等于 1;(C)等于 0;(D)等于 2 (提示:有界函数与无穷小的乘积仍为无穷小)3、设函数f x yxyxyxyxy( , )222222000,则( ,)f x y( A )(A) 处处连续;(B) 处处有极限,但不连续;(C)
2、 仅在( 0,0)点连续;(D) 除( 0,0)点外处处连续(提示:在220 xy,( , )f x y处处连续;在0,0 xy,令ykx,22222000limlim0(0,0)1xxykxkxfxk xk,故在220 xy,函数亦连续。所以,( , )f x y在整个定义域内处处连续。)4、函数zf x y( , )在点(,)xy00处具有偏导数是它在该点存在全微分的( A )(A) 必要而非充分条件;(B) 充分而非必要条件;(C)充分必要条件;(D) 既非充分又非必要条件5、设uyxarctan,则ux= ( B )(A) xxy22;(B) yxy22;(C) yxy22;(D) x
3、xy226、设f x yyx( , )arcsin,则fx( , )2 1( A )(A)14;(B)14;(C)12;(D)12精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 5 页精品资料欢迎下载7、若)ln(yxz,则yzyxzx(C)(A)yx;(B)yx;(C)21;( D)218、设yxzarctan,vux,vuy,则vuzz(C)(A)22vuvu;( B)22vuuv;(C)22vuvu;(D)22vuuv9、若f xxxx fxxxx( ,),( ,)232612,则fxxy( ,)2= ( D )(A) x32;(
4、B) x32;(C) 21x;(D) 21x10、设zyx,则()( , )zxzy2 1( A )(A) 2 ;(B) 1+ln2 ;(C) 0 ;(D) 1 11、设函数zxy122,则点( , )00是函数z的( B )(A)极大值点但非最大值点;(B)极大值点且是最大值点;(C)极小值点但非最小值点;(D)极小值点且是最小值点。12、设函数zf x y( , )具有二阶连续偏导数,在Pxy000(,)处,有( C )2)()(,0)()(, 0)(, 0)(000000PfPfPfPfPfPfyxxyyyxxyx,则(A)点P0是函数z的极大值点;(B)点P0是函数z的极小值点;(C)
5、点P0非函数z的极值点;(D)条件不够,无法判定。二、填空题1、极限limsin()xyxyx0= 。答:2、极限limln()xyxyexy01222=。答:ln23、函数zxyln()的定义域为。答:xy14、函数zxyarcsin的定义域为。答:11x,y05、设函数f x yxyxyyx( , )ln22,则f kx ky(,)= 。答:kfx y2( , )精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 5 页精品资料欢迎下载6、设函数fx yxyxy( , ),则f xy xy(,)= 。答:222xyx(22()()(,)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年多元函数微分学复习题及答案 2022 多元 函数 微分学 复习题 答案
限制150内