2022年高中数学数列知识点总结及题型归纳 .pdf
《2022年高中数学数列知识点总结及题型归纳 .pdf》由会员分享,可在线阅读,更多相关《2022年高中数学数列知识点总结及题型归纳 .pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 数列一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。记作na,在数列第一个位置的项叫第1 项(或首项),在第二个位置的叫第2 项,序号为n的项叫第n项(也叫通项)记作na;数列的一般形式:1a,2a,3a,na,简记作na。例:判断下列各组元素能否构成数列(1)a, -3, -1, 1, b, 5, 7, 9; (2)2010 年各省参加高考的考生人数。(2)通项公式的定义:如果数列na的第 n 项与 n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。例如: 1 ,2 ,3 ,4, 5 ,:514131211,数列的通项公式
2、是na= n(n7,nN) ,数列的通项公式是na= 1n(nN) 。说明:na表示数列,na表示数列中的第n项,na= fn表示数列的通项公式; 同一个数列的通项公式的形式不一定唯一。例如,na= ( 1)n=1,21()1,2nkkZnk;不是每个数列都有通项公式。例如,1,1.4 ,1.41 ,1.414 ,(3)数列的函数特征与图象表示:序号: 1 2 3 4 5 6 项:4 5 6 7 8 9 上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。从函数观点看, 数列实质上是定义域为正整数集N(或它的有限子集)的函数( )f n当自变量n从 1 开始依次取值时对应的
3、一系列函数值(1),(2),(3),fff,( )f n,通常用na来代替fn,其图象是一群孤立点。例:画出数列12nan的图像 . (4)数列分类:按数列项数是有限还是无限分:有穷数列和无穷数列;按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列?(1)1,2,3, 4,5,6, (2)10, 9, 8, 7, 6, 5, (3) 1, 0, 1, 0, 1, 0, (4)a, a, a, a, a,(5)数列 na 的前 n 项和nS与通项na的关系:11(1)(2)nnnSnaSSn例:已知数列na的
4、前 n 项和322nsn,求数列na的通项公式二、等差数列题型一 、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示。用递推公式表示为1(2)nnaad n或1(1)nnaad n。例:等差数列12nan,1nnaa题型二 、等差数列的通项公式:1(1)naand;说明:等差数列(通常可称为A P数列)的单调性:d0为递增数列,0d为常数列,0d为递减数列。例: 1. 已知等差数列na中,12497116aaaa,则,等于()A15 B30 C 31 D 64 2.na是首项11a,公
5、差3d的等差数列,如果2005na,则序号n等于(A)667 ( B)668 (C)669 (D)670 3.等差数列12, 12nbnann,则na为nb为(填“递增数列”或“递减数列” )题型三 、等差中项的概念:定义:如果a,A,b成等差数列,那么A叫做a与b的等差中项。其中2abAa,A,b成等差数列2abA即:212nnnaaa(mnmnnaaa2)例: 1 (06 全国 I )设na是公差为正数的等差数列,若12315aaa,12380a a a,则111213aaa()A120 B105C90 D752. 设数列na是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的
6、首项是()A1 B.2 C.4 D.8 题型四 、等差数列的性质:(1)在等差数列na中,从第2 项起,每一项是它相邻二项的等差中项;(2)在等差数列na中,相隔等距离的项组成的数列是等差数列;(3)在等差数列na中,对任意m,nN,()nmaanm d,nmaadnm()mn;(4)在等差数列na中,若m,n,p,qN且mnpq,则mnpqaaaa;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 10 页2 题型五 、等差数列的前n和的求和公式:11()(1)22nnn aan nSnadnda)(2n2112。(),(2为常数BAB
7、nAnSnna是等差数列 ) 递推公式:2)(2)()1(1naanaaSmnmnn例: 1. 如果等差数列na中,34512aaa,那么127.aaa( A )14 ( B)21 ( C)28 (D)35 2. (2009 湖南卷文)设nS是等差数列na的前 n 项和,已知23a,611a,则7S等于 ( ) A13 B35 C49 D 63 3. (2009 全国卷理)设等差数列na的前n项和为nS,若972S, 则249aaa= 4. (2010 重庆文)(2)在等差数列na中,1910aa,则5a的值为()(A)5 ( B)6 (C) 8 (D)10 5. 若一个等差数列前3 项的和为
8、34,最后 3 项的和为146,且所有项的和为390,则这个数列有()A.13 项B.12 项C.11 项D.10 项6. 已知等差数列na的前n项和为nS,若118521221aaaaS,则7. (2009 全国卷理)设等差数列na的前n项和为nS,若535aa则95SS8 (98 全国)已知数列bn是等差数列,b1=1,b1+b2+b10=100. ()求数列bn的通项bn;9. 已知na数列是等差数列,1010a,其前 10 项的和7010S,则其公差d等于 ( ) 3132BA C.31 D.3210. (2009 陕西卷文)设等差数列na的前 n 项和为ns,若6312as, 则na
9、11 (00 全国)设an为等差数列,Sn为数列an的前n项和,已知S77,S1575,Tn为数列nSn的前n项和,求Tn。12. 等差数列na的前n项和记为nS,已知50302010aa,求通项na;若nS=242,求n13. 在等差数列na中, ( 1)已知812148,168,SSad求 和; (2)已知658810,5,aSaS求和;(3)已知3151740,aaS求题型六 . 对于一个等差数列:(1)若项数为偶数,设共有2n项,则S偶S奇nd; 1nnSaSa奇偶;(2)若项数为奇数,设共有21n项,则S奇S偶naa中;1SnSn奇偶。题型七 . 对与一个等差数列,nnnnnSSSS
10、S232,仍成等差数列。例: 1. 等差数列 an 的前m项和为 30,前 2m项和为 100,则它的前3m项和为()A.130 B.170 C.210 D.260 2. 一个等差数列前n项的和为 48,前 2n项的和为60,则前 3n项的和为。3已知等差数列na的前 10 项和为 100,前 100 项和为 10,则前 110 项和为4. 设nS为等差数列na的前n项和,971043014SSSS,则,= 5 ( 06 全国 II )设Sn是等差数列an的前n项和,若36SS13,则612SSA310B 13 C18D 19题型八 判断或证明一个数列是等差数列的方法:定义法:)常数)(Nnd
11、aann(1na是等差数列中项法:)221Nnaaannn(na是等差数列通项公式法:),(为常数bkbknanna是等差数列前n项和公式法:),(2为常数BABnAnSnna是等差数列精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 10 页3 例: 1. 已知数列na满足21nnaa,则数列na为 ()A.等差数列 B.等比数列 C.既不是等差数列也不是等比数列 D.无法判断 2.已知数列na的通项为52nan,则数列na为 ()A.等差数列 B.等比数列 C.既不是等差数列也不是等比数列 D.无法判断3. 已知一个数列na的前 n项
12、和422nsn,则数列na为()A.等差数列 B.等比数列 C.既不是等差数列也不是等比数列 D.无法判断4. 已知一个数列na的前 n项和22nsn,则数列na为()A.等差数列 B.等比数列 C.既不是等差数列也不是等比数列 D.无法判断5. 已知一个数列na满足0212nnnaaa,则数列na为()A.等差数列 B.等比数列 C.既不是等差数列也不是等比数列 D.无法判断6. 数列na满足1a=8,022124nnnaaaa,且(Nn)求数列na的通项公式;7 (01 天津理, 2)设Sn是数列 an的前n项和,且Sn=n2,则 an是()A.等比数列,但不是等差数列 B.等差数列,但不
13、是等比数列C.等差数列,而且也是等比数列 D.既非等比数列又非等差数列题型九 . 数列最值(1)10a,0d时,nS有最大值;10a,0d时,nS有最小值;(2)nS最值的求法:若已知nS,nS的最值可求二次函数2nSanbn的最值;可用二次函数最值的求法(nN) ;或者求出na中的正、负分界项,即:若已知na,则nS最值时n的值(nN)可如下确定100nnaa或100nnaa。例: 1等差数列na中,12910SSa,则前项的和最大。 2设等差数列na的前n项和为nS,已知001213123SSa,求出公差d的范围,指出1221SSS,中哪一个值最大,并说明理由。3 (02 上海)设an (
14、nN*)是等差数列,Sn是其前n项的和,且S5S6,S6S7S8,则下列结论错误的是()A.d0 B.a70 C.S9S5 D.S6与 S7均为 Sn的最大值4已知数列na的通项9998nn(Nn) ,则数列na的前 30 项中最大项和最小项分别是5. 已知na是等差数列,其中131a,公差8d。(1)数列na从哪一项开始小于0?(2)求数列na前n项和的最大值,并求出对应n的值6. 已知na是各项不为零的等差数列,其中10a,公差0d,若100S, 求数列na前n项和的最大值7. 在等差数列na中,125a,179SS,求nS的最大值题型十 . 利用11(1)(2)nnnSnaSSn求通项1
15、. 数列na的前n项和21nSn (1)试写出数列的前5 项; (2)数列na是等差数列吗?(3)你能写出数列na的通项公式吗?2已知数列na的前n项和,142nnSn则3. 设数列na的前 n 项和为 Sn=2n2,求数列na的通项公式;4. 已知数列na中,31a前n和1) 1)(1(21nnanS求证:数列na是等差数列求数列na的通项公式5. (2010 安徽文)设数列na的前 n 项和2nSn,则8a的值为()(A) 15 (B) 16 (C) 49 (D)64 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 10 页4 等比
16、数列等比数列定义一般地, 如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q表示(0)q,即:1na:(0)naq q。一、递推关系与通项公式mnmnnnnnqaaqaaaa推广:通项公式:递推关系:111q1 在等比数列na中,2, 41qa,则na2 在等比数列na中,3712,2aq, 则19_.a3. (07 重庆文)在等比数列an 中,a28,a164, ,则公比q 为()( A )2 (B)3 (C)4 (D)8 4.在等比数列na中,22a,545a,则8a= 5. 在各项都为正数的等比数列na中
17、,首项13a,前三项和为21,则345aaa()A 33 B 72 C 84 D 189 二、等比中项:若三个数cba,成等比数列,则称b为ca与的等比中项,且为acbacb2,注:是成等比数列的必要而不充分条件. 例: 1.23和23的等比中项为( ) ()1A( )1B()1C()2D2.(2009 重庆卷文) 设na是公差不为0 的等差数列,12a且136,a a a成等比数列, 则na的前n项和nS=()A2744nnB2533nnC2324nnD2nn三、等比数列的基本性质,1. ( 1)qpnmaaaaqpnm,则若),(Nqpnm其中(2))(2Nnaaaaaqmnmnnmnmn
18、,(3)na为等比数列,则下标成等差数列的对应项成等比数列. (4)na既是等差数列又是等比数列na是各项不为零的常数列. 例: 1在等比数列na中,1a和10a是方程22510 xx的两个根 , 则47aa( ) 5()2A2()2B1()2C1()2D2. 在等比数列na,已知51a,100109aa,则18a= 3. 在等比数列na中,143613233nnaaaaaa,求na若nnnTaaaT求,lglglg214. 等比数列na的各项为正数,且5647313231018,loglogloga aa aaaa则() A12 B10 C8 D2+3log 55. (2009 广东卷理)已
19、知等比数列na满足0,1,2,nan,且25252 (3)nna an,则当1n时,2123221logloglognaaa()A. (21)nn B. 2(1)n C. 2n D. 2(1)n四、等比数列的前n 项和,)1(11)1() 1(111qqqaaqqaqnaSnnn例: 1. 已知等比数列na的首相51a,公比2q,则其前n 项和nS2. 已知等比数列na的首相51a,公比21q,当项数n 趋近与无穷大时,其前n项和nS3. 设等比数列na的前 n 项和为nS,已, 62a30631aa,求na和nS4 (2006 年北京卷)设4710310( )22222()nf nnN,则(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高中数学数列知识点总结及题型归纳 2022 年高 数学 数列 知识点 总结 题型 归纳
限制150内