2022年高中数学上学期知识点总结 .pdf
《2022年高中数学上学期知识点总结 .pdf》由会员分享,可在线阅读,更多相关《2022年高中数学上学期知识点总结 .pdf(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载第一章集合与函数概念课时一:集合有关概念1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。3.集合的中元素的三个特性:( 1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。例:世界上最高的山、中国古代四大美女、教室里面所有的人(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。例:由 HAPPY的字母组成的集合H,A,P,Y (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合例: a,b,c
2、 和a,c,b 是表示同一个集合3.集合的表示 : 如: 我校的篮球队员,太平洋 ,大西洋 ,印度洋 ,北冰洋 (1)用大写字母表示集合:A= 我校的篮球队员,B=1,2,3,4,5 (2)集合的表示方法:列举法与描述法。1)列举法:将集合中的元素一一列举出来a,b,c 2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。xR| x-32 ,x| x-32 语言描述法:例:不是直角三角形的三角形 Venn 图:画出一条封闭的曲线,曲线里面表示集合。4、集合的分类 :(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合例: x|x2=5
3、5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:aA (2)元素不在集合里,则元素不属于集合,即:a A 注意:常用数集及其记法:非负整数集(即自然数集)记作: N 正整数集N*或 N+ 整数集 Z 有理数集Q 实数集 R 课时二、集合间的基本关系1.“包含”关系子集(1)定义:如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合 B 的子集。记作:BA(或 B)注意:BA有两种可能( 1)A 是 B 的一部分,;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 13 页学习必备欢迎下载
4、(2)A 与 B 是同一集合。反之 : 集合 A 不包含于集合B,或集合 B 不包含集合A,记作 AB 或 BA 2“相等”关系: A=B (5 5,且 5 5,则 5=5) 实例:设A=x|x2-1=0 B=-1,1 “元素相同则两集合相等”即:任何一个集合是它本身的子集。AA 真子集 :如果 AB,且 A B 那就说集合A 是集合 B 的真子集,记作AB(或 BA) 或若集合AB,存在 xB 且 x A,则称集合A 是集合 B 的真子集。如果AB, BC ,那么AC 如果 AB 同时BA 那么 A=B 3. 不含任何元素的集合叫做空集,记为规定 : 空集是任何集合的子集,空集是任何非空集合
5、的真子集。有 n 个元素的集合,含有2n个子集, 2n -1 个真子集, 2n -1 个非空子集, 2n -2 个非空真子集课时三、集合的运算运算类型交集并集补集定义由所有属于A 且属于 B 的元素所组成的集合,叫做A,B的交集 记作 AB (读作 A交 B),即 AB=x|xA,且 xB由所有属于集合A 或属于集合 B 的元素所组成的集合,叫做A,B 的并集 记作:AB(读作 A 并 B),即AB =x|xA,或 xB)全集:一般,若一个集合汉语我们所研究问题中这几道的所有元素,我们就称这个集合为全集,记作:U 设 S 是一个集合,A 是 S 的一个子集,由 S 中所有不属于A 的元素组成的
6、集合,叫做 S 中子集 A 的补集 (或余集)记作ACSCSA=,|AxSxx且韦恩图示AB图 1AB图 2性质A A=A A =A B=BA A BA A BB AUA=A AU=A AUB=BUA AUBAUBB (CuA) (CuB)= Cu(AUB) (CuA) U (CuB)= Cu(A B) AU(CuA)=U A (CuA)=S A 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 13 页学习必备欢迎下载课时四:函数的有关概念1函数的概念:设 A、B 是非空的数集,如果按照某个确定的对应关系f,使对于集合 A 中的任意一个
7、数 x,在集合 B 中都有唯一确定的数f(x)和它对应,那么就称f:AB 为从集合 A 到集合 B 的一个函数记作:y=f(x) ,x A( 1)其中, x 叫做自变量,x 的取值范围A 叫做函数的定义域;(2)与 x 的值相对应的y 值叫做函数值,函数值的集合f(x)| x A 叫做函数的值域函数的三要素:定义域、值域、对应法则3、区间的概念:(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示4 函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。(3)列表法:选取的自变量要有代
8、表性,可以反应定义域的特征。5、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x A)的图象 C 上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在 C 上 . (2) 画法A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换。(3)函数图像变换的特点:1)函数 y=f(x) 关于 X 轴对称 y=-f(x) 2)函数 y=f(x) 关于 Y 轴对称 y=f(-x) 3)函数 y=f(x) 关于原
9、点对称 y=-f(-x) 2映射一般地,设 A、B 是两个非空的集合,如果按某一个确定的对应法则f,使对于集合 A 中的任意一个元素x,在集合 B 中都有唯一确定的元素y 与之对应,那么就称对应f:AB 为从集合 A 到集合 B 的一个映射。记作“ f(对应关系): A(原象)B(象)”对于映射 f:AB 来说,则应满足:(1)集合 A 中的每一个元素,在集合B 中都有象,并且象是唯一的;(2)集合 A 中不同的元素,在集合B 中对应的象可以是同一个;(3)不要求集合 B 中的每一个元素在集合A 中都有原象。课时五:函数的解析表达式,及函数定义域的求法1、函数解析式子的求法(1)、函数的解析式
10、是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. ( 2)、求函数的解析式的主要方法有:1)代入法:2)待定系数法:3)换元法:4)拼凑法:2定义域 :能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 13 页学习必备欢迎下载(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四
11、则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合 . (6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义. 3、相同函数的判断方法:表达式相同(与表示自变量和函数值的字母无关);定义域一致(两点必须同时具备 ) 课时六:1值域: 先考虑其定义域(1)观察法:直接观察函数的图像或函数的解析式来求函数的值域;(2)配方法:针对二次函数的类型,根据二次函数图像的性质来确定函数的值域,注意定义域的范围。(3)代换法(换元法):作变量代换,针对根式的题型,转化成二次函数的类型。(4)分离常数法课时七1.分段函数(1)在定义域的不同部分上有不同的解析表
12、达式的函数。(2)各部分的自变量的取值情况(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集补充:复合函数如果 y=f(u)(u M),u=g(x)(x A),则 y=fg(x)=F(x)(x A) 称为 f、 g 的复合函数。(4)常用的分段函数1)取整函数:2)符号函数:3)含绝对值的函数:注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的。所以函数是映射,而映射不一定的函数课时八函数的单调性(局部性质 )及最值1、增减函数(1)设函数y=f(x) 的定义域为I,如果对于定义域I 内的某个区间D 内的任意两个自变量x1,x2,当 x1x2时,都有f(x1)f(
13、x2),那么就说f(x)在区间 D 上是增函数 .区间 D 称为 y=f(x) 的单调增区间. (2)如果对于区间D 上的任意两个自变量的值x1,x2,当 x1x2 时,都有 f(x1)f(x2),那么就说f(x)在这个区间上是减函数.区间 D 称为 y=f(x) 的单调减区间. 注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种2、 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的 )单调性, 在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. 3、函数单调区间与单调性的判定方法(A) 定
14、义法:1 任取 x1,x2 D,且 x1x2;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 13 页学习必备欢迎下载2 作差 f(x1)f(x2);3 变形(通常是因式分解和配方);4 定号(即判断差f(x1)f(x2)的正负);5 下结论(指出函数f(x)在给定的区间D 上的单调性)(B)图象法 (从图象上看升降) (C) 复合函数的单调性复合函数fg(x)的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集. 课时
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高中数学上学期知识点总结 2022 年高 数学 上学 知识点 总结
限制150内