2022年高二数学练习卷两平面的平行的判定和性质 .pdf
《2022年高二数学练习卷两平面的平行的判定和性质 .pdf》由会员分享,可在线阅读,更多相关《2022年高二数学练习卷两平面的平行的判定和性质 .pdf(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、优秀学习资料欢迎下载典型例题一例 1: 已知正方体1111-DCBAABCD求证: 平面/11DAB平面BDC1证明:1111-DCBAABCD为正方体,BCAD11/,又BC1平面BDC1,故/1AD平面BDC1同理/11BD平面BDC1又1111DBDAD, 平面/11DAB平面BDC1说明:上述证明是根据判定定理1 实现的本题也可根据判定定理2 证明,只需连接CA1即可,此法还可以求出这两个平行平面的距离典型例题二例 2:如图,已知/,aA,A/a求证:a证明: 过直线a作一平面,设1a,b/ba /1又/aba/在同一个平面内过同一点A有两条直线1,aa与直线b平行a与1a重合,即a精
2、选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 18 页优秀学习资料欢迎下载说明: 本题也可以用反证法进行证明典型例题三例 3:如果一条直线与两个平行平面中的一个相交,那么它和另一个也相交已知: 如图,/,Al求证:l与相交证明: 在上取一点B,过l和B作平面,由于与有公共点A,与有公共点B与、都相交设a,b/ba/又l、a、b都在平面内,且l和a交于Al与b相交所以l与相交典型例题四例 4:已知平面/,AB,CD为夹在a,间的异面线段,E、F分别为AB、CD的中点求证:/EF,/EF证明: 连接AF并延长交于GFCDAGAG,CD确定平
3、面, 且AC,DG精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 18 页优秀学习资料欢迎下载/,所以DGAC /,GDFACF,又DFGAFC,DFCF, ACFDFGFGAF又BEAE,BGEF /,BG故/EF同理/EF说明: 本题还有其它证法,要点是对异面直线的处理典型例题六例 6如图,已知矩形ABCD的四个顶点在平面上的射影分别为1A、1B、1C、1D,且1A、1B、1C、1D互不重合,也无三点共线求证: 四边形1111DCBA是平行四边形证明: 1AA,1DD11/ DDAA不妨设1AA和1DD确定平面同理1BB和1CC确定
4、平面又11/ BBAA,且1BB/1AA同理/AD又AADAA1/又11DA,11CB精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 18 页优秀学习资料欢迎下载1111/CBDA同理1111/DCBA四边形1111DCBA是平行四边形典型例题七例 7设直线l、m,平面、,下列条件能得出/的是() Al,m,且/l,/mBl,m,且ml /Cl,m,且ml /D/l,/m,且ml /分析: 选项 A 是错误的,因为当ml /时,与可能相交选项B 是错误的,理由同 A选项 C 是正确的,因为l,lm/,所以m,又m,/选项D 也是错误的,
5、满足条件的可能与相交答案: C 说明: 此题极易选A,原因是对平面平行的判定定理掌握不准确所致本例这样的选择题是常见题目,要正确得出选择,需要有较好的作图能力和对定理、公理的准确掌握、深刻理解,同时要考虑到各种情况典型例题八例 8设平面平面, 平面平面, 且、分别与相交于a、b,ba/ 求证:平面/平面分析: 要证明两平面平行,只要设法在平面上找到两条相交直线,或作出相交直线,它们分别与平行(如图) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 18 页优秀学习资料欢迎下载证明: 在平面内作直线PQ直线a,在平面内作直线MN直线b平面
6、平面,PQ平面,MN平面,MNPQ /又pa /,QaPQ,NbMN,平面/平面说明: 如果在、内分别作PQ,MN,这样就走了弯路,还需证明PQ、MN在、内,如果直接在、内作a、b的垂线,就可推出MNPQ /由面面垂直的性质推出“线面垂直”,进而推出 “线线平行” 、 “线面平行” ,最后得到 “面面平行”,最后得到“面面平行” 其核心是要形成应用性质定理的意识,在立体几何证明中非常重要典型例题九例 9如图所示, 平面/平面,点A、C,点DB、,aAB是、的公垂线,CD是斜线若bBDAC,cCD,M、N分别是AB和CD的中点,(1)求证:/MN;(2)求MN的长分析: (1)要证/MN,取AD
7、的中点P,只要证明MN所在的平面/PMN为此证明/PM,/PN即可 (2)要求MN之长, 在CMA中,CM、CN的长度易知,关键在于证明CDMN,从而由勾股定理可以求解证明: (1)连结AD,设P是AD的中点,分别连结PM、PNM是AB的中点,BDPM /又BD,/PM精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 18 页优秀学习资料欢迎下载同理N是CD的中点,ACPN /AC,/PN/,PPMPN,平面/PMNMN平面PMN,/MN(2)分别连结MC、MDbBDAC,aBMAM21,又AB是、的公垂线,90DBMCAM,ACMRtB
8、DMRt,DMCM,DMC是等腰三角形又N是CD的中点,CDMN在CMNRt中,22222421cabCNCMMN说明: (1)证“线面平行” 也可以先证 “面面平行” ,然后利用面面平行的性质,推证“线面平行”,这是一种以退为进的解题策略(2)空间线段的长度,一般通过构造三角形、然后利用余弦定理或勾股定理来求解(3)面面平行的性质:面面平行,则线面平行;面面平行,则被第三个平面所截得的交线平行典型例题十例 10如果平面内的两条相交直线与平面所成的角相等,那么这两个平面的位置关系是 _分析: 按直线和平面的三种位置关系分类予以研究解: 设a、b是平面内两条相交直线(1)若a、b都在平面内,a、
9、b与平面所成的角都为0,这时与重合,根据教材中规定,此种情况不予考虑(2)若a、b都与平面相交成等角,且所成角在)90,0(内;a、b与有公共点,这时与相交若a、b都与平面成90角,则ba/,与已知矛盾此种情况不可能(3)若a、b都与平面平行,则a、b与平面所成的角都为0,内有两条直线与平面平行,这时/精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 18 页优秀学习资料欢迎下载综上,平面、的位置关系是相交或平行典型例题十一例 11试证经过平面外一点有且只有一个平面和已知平面平行已知:平面A,求证: 过A有且只有一个平面/分析: “有且只
10、有”要准确理解,要先证这样的平面是存在的,再证它是惟一的,缺一不可证明: 在平面内任作两条相交直线a和b,则由A知,aA,bA点A和直线a可确定一个平面M,点A和直线b可确定一个平面N在平面M、N内过A分别作直线aa /、bb /,故a、b是两条相交直线,可确定一个平面a,a,aa /,/a同理/b又a,b,Aba,/所以过点A有一个平面/假设过A点还有一个平面/,则在平面内取一直线c,cA,点A、直线c确定一个平面,由公理 2 知:m,n,cm/,cn/,又mA,nA,这与过一点有且只有一条直线与已知直线平行相矛盾,因此假设不成立,所以平面只有一个所以过平面外一点有且只有一个平面与已知平面平
11、行典型例题十二例 12已知点S是正三角形ABC所在平面外的一点, 且SCSBSA,SG为SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF内的位置关精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 18 页优秀学习资料欢迎下载系,并给予证明分析 1:如图,观察图形,即可判定/SG平面DEF,要证明结论成立,只需证明SG与平面DEF内的一条直线平行观察图形可以看出:连结CG与DE相交于H,连结FH,FH就是适合题意的直线怎样证明FHSG/?只需证明H是CG的中点证法 1:连结CG交DE于点H,DE是ABC的中位线,
12、ABDE /在ACG中,D是AC的中点,且AGDH /,H为CG的中点FH是SCG的中位线,SGFH /又SG平面DEF,FH平面DEF,/SG平面DEF分析2: 要证明/SG平面DEF,只需证明平面SAB /平面DEF,要证明平面DEF /平面SAB,只需证明DFSA/,EFSB/而DFSA/,EFSB/可由题设直接推出证法 2:EF为SBC的中位线,SBEF /EF平面SAB,SB平面SAB,/EF平面SAB同理:/DF平面SAB,FDFEF,平面SAB /平面DEF,又SG平面SAB,/SG平面DEF典型例题十三例 13如图, 线段PQ分别交两个平行平面、于A、B两点,线段PD分别交、于
13、C、D两点,线段QF分别交、于F、E两点,若9PA,12AB,12BQ,ACF的面积为72,求BDE的面积精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 18 页优秀学习资料欢迎下载分析: 求BDE的面积,看起来似乎与本节内容无关,事实上,已知ACF的面积,若BDE与ACF的对应边有联系的话,可以利用ACF的面积求出BDE的面积解: 平面AFQAF,平面BEQAF,又/,BEAF /同理可证:BDAC/,FAC与EBD相等或互补,即EBDFACsinsin由BEFA/,得212412QAQBAFBE,AFBE21由ACBD /,得:73
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高二数学练习卷两平面的平行的判定和性质 2022 年高 数学 练习 平面 平行 判定 性质
限制150内