2022年高中数学知识点和公式基本 .pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年高中数学知识点和公式基本 .pdf》由会员分享,可在线阅读,更多相关《2022年高中数学知识点和公式基本 .pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、名师精编优秀资料高中数学公式大全、高考数学解题方法思路总结高中数学常用公式及结论1 元素与集合的关系:UxAxC A,UxC AxA.AA?2 集合12,na aa的子集个数共有2n个;真子集有21n个;非空子集有21n个;非空的真子集有22n个. 6 四种命题的相互关系( 下图 ): (原命题与逆否命题同真同假;逆命题与否命题同真同假. )原命题互逆逆命题若则若则互互互为为互否否逆逆否否否命题逆否命题若非则非互逆若非则非充要条件:(1) 、pq,则 P是 q 的充分条件,反之,q是 p 的必要条件;(2) 、pq,且 q p,则 P 是 q 的充分不必要条件;(3) 、p p ,且qp,则
2、P 是 q 的必要不充分条件;4、p p ,且 q p,则 P是 q 的既不充分又不必要条件。8 函数的奇偶性: (注: 是奇偶函数的前提条件是:定义域必须关于原点对称)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称 ; 反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数9 函数的周期性:定义: 对函数 f(x) ,若存在 T0,使得 f(x+T )=f(x) ,则就叫f(x)是周期函数,其中,T 是 f(x)的一个周期。周期函数几种常见的表述形式:(1) 、f(x+T)= - f(x) ,此时周期为2T ;(2) 、 f
3、(x+m) =f(x+n) ,此时周期为2mn;(3) 、1()( )f xmf x,此时周期为2m 。10 常见函数的图像:k0y=kx+boyxa0y=ax2+bx+coyx0a11y=axoyx0a11y=logaxoyx11 对于函数)(xfy(Rx),)()(xbfaxf恒成立 , 则函数)(xf的对称轴是2bax; 两个精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 10 页名师精编优秀资料函数)(axfy与)(xbfy的图象关于直线2bax对称 . 12 分数指数幂与根式的性质:(1)mnmnaa(0,am nN,且1n)
4、. (2)11mnmnmnaaa(0,am nN,且1n). (3)()nnaa. (4)当n为奇数时,nnaa;当n为偶数时,,0|,0nna aaaa a. 13 指数式与对数式的互化式:logbaNbaN(0,1,0)aaN. 指数性质:(1) 1、1ppaa;(2) 、01a(0a); (3) 、()mnmnaa(4) 、(0, ,)rsrsaaaar sQ;(5) 、mnmnaa;指数函数:(1) 、(1)xya a在定义域内是单调递增函数;(2) 、(01)xyaa在定义域内是单调递减函数。注:指数 函数图象都恒过点(0,1)对数性质:(1) 、logloglog ()aaaMNM
5、N; (2) 、logloglogaaaMMNN;(3) 、loglogmaabmb;(4) 、loglogmnaanbbm;(5) 、log 10a(6) 、log1aa;(7) 、l o gabab对数函数:(1) 、log(1)ayx a在定义域内是单调递增函数;(2) 、log(01)ayxa在定义域内是单调递减函数;注:对数 函数图象都恒过点(1, 0)(3) 、l og0,( 0, 1),(1,axa xa x或(4) 、log0(0,1)(1,)axax则或(1,)(0,1)ax则14 对数的换底公式 :logloglogmamNNa (0a, 且1a,0m, 且1m,0N).
6、对数恒等式:logaNaN(0a, 且1a,0N). 推论loglogmnaanbbm(0a, 且1a,0N). 15 对数的四则运算法则: 若 a0,a1,M 0, N 0,则精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 10 页名师精编优秀资料(1)log ()loglogaaaMNMN; (2) logloglogaaaMMNN; (3)loglog()naaMnM nR; (4) loglog( ,)mnaanNN n mRm。16 平均增长率的问题(负增长时0p) :如果原来产值的基础数为N,平均增长率为p,则对于时间x的总
7、产值y,有(1)xyNp. 17 等差数列:通项公式:(1)1(1)naand,其中1a为首项, d 为公差, n 为项数,na为末项。( 2)推广:()nkaank d( 3)1(2)nnnaSSn(注 :该公式对任意数列都适用)前 n 项和:( 1)1()2nnn aaS;其中1a为首项, n 为项数,na为末项。( 2)1(1)2nn nSnad( 3)1(2)nnnSSan(注 :该公式对任意数列都适用)( 4)12nnSaaa(注 :该公式对任意数列都适用)常用性质:(1) 、若 m+n=p+q ,则有mnpqaaaa;注: 若,mnpaaa是的等差中项,则有2mnpaaan、m、p
8、 成等差。(2) 、若na、nb为等差数列,则nnab为等差数列。(3) 、na为等差数列,nS为其前 n 项和,则232,mmmmmSSSSS也成等差数列。(4) 、,0pqpqaqapa 则;(5)1+2+3+n=2)1(nn等比数列:通项公式:(1)1*11()nnnaaa qqnNq,其中1a为首项, n 为项数, q 为公比。(2)推广:n knkaaq(3)1(2)nnnaSSn(注:该公式对任意数列都适用)前 n 项和:(1)1(2)nnnSSa n(注:该公式对任意数列都适用)(2)12nnSaaa(注:该公式对任意数列都适用)精选学习资料 - - - - - - - - -
9、名师归纳总结 - - - - - - -第 3 页,共 10 页名师精编优秀资料(3)11(1)(1)(1)1nnnaqSaqqq常用性质:(1) 、若 m+n=p+q ,则有mnpqaaaa;注: 若,mnpaa a是的等比中项,则有2mnpaaan、m、p 成等比。( 2) 、若na、nb为等比数列,则nnab为等比数列。20 同角三角函数的基本关系式:22sincos1,tan=cossin,21 正弦、余弦的诱导公式(奇变偶不变,符号看象限)22 和角与差角公式sin()sincoscossin;cos()coscossinsin; tantantan()1tantan. sincos
10、ab=22sin()ab( 辅助角所在象限由点( , )a b的象限决定 ,tanba ). 23 二倍角公式及降幂公式sin 2sincos22tan1tan. 2222cos2cossin2cos112sin221tan1tan. 22tantan21tan. sin 21cos2tan1cos2sin 2221cos21cos2sin,cos2224 三角函数的周期公式函数sin()yx, x R 及函数cos()yx, x R(A, ,为常数,且A 0) 的周期2|T;函数tan()yx,,2xkkZ(A, ,为常数,且A0) 的周期|T. 三角函数的图像:-11y=sinx-223
11、/2 /2-3 /2- /2oyx-11y=cosx-223 /2 /2-3 /2- /2oyx25 正弦定理:2sinsinsinabcRABC(R为ABC外接圆的半径). 2sin,2sin,2sinaRA bRB cRC:sin:sin: sina b cABC26 余弦定理:2222cosabcbcA;2222cosbcacaB;2222coscababC. 27 面积定理:(1)111222abcSahbhch(abchhh、分别表示a、b、c 边上的高) . 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 10 页名师精编优
12、秀资料(2)111sinsinsin222SabCbcAcaB. (3)221(| |)()2OABSOAOBOA OB. 2,2abcSrrabc斜边内切圆直角内切圆28 三角形内角和定理:在 ABC中,有()ABCCAB222CAB222()CAB. 29 实数与向量的积的运算律: 设、 为实数,那么:(1) 结合律: ( a)=( ) a; (2) 第一分配律:( +) a=a+a; (3) 第二分配律:(a+b)= a+b. 30a与b的数量积 (或内积 ) :ab=|a|b|cos。31 平面向量的坐标运算:(1) 设a=11(,)x y,b=22(,)xy,则a+b=1212(,)
13、xxyy. (2) 设a=11(,)x y,b=22(,)xy,则a-b=1212(,)xxyy. (3)设 A11(,)x y,B22(,)xy, 则2121(,)ABOBOAxx yy. (4) 设a=( , ),x yR,则a=(,)xy. (5) 设a=11(,)x y,b=22(,)xy,则ab=1212()x xy y. 32 两向量的夹角公式:121222221122cos| |x xy ya babxyxy(a=11(,)x y,b=22(,)xy). 33 平面两点间的距离公式:,A Bd=|ABAB AB222121()()xxyy(A11(,)x y,B22(,)xy).
14、 34 向量的平行与垂直:设a=11(,)x y,b=22(,)xy,且b0,则:a|bb=a12210 x yx y. (交叉相乘差为零)ab (a0)ab=012120 x xy y. (对应相乘和为零)35 线段的定比分公式: 设111(,)P x y,222(,)P xy,( ,)P x y是线段12PP的分点 ,是实数,且12PPPP,则121211xxxyyy121OPOPOP12(1)OPtOPt OP(11t). 36 三角形的重心坐标公式: ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ), 则 ABC的重心的坐标是123123(,
15、)33xxxyyyG. 37 三角形五“心”向量形式的充要条件:设O为ABC所在平面上一点,角,A B C所对边长分别为, ,a b c,则(1)O为ABC的外心222OAOBOC. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 10 页名师精编优秀资料(2)O为ABC的重心0OAOBOC. (3)O为ABC的垂心OA OBOB OCOC OA. (4)O为ABC的内心0aOAbOBcOC. (5)O为ABC的A的旁心aOAbOBcOC. 38 常用不等式:(1),a bR222abab( 当且仅当ab 时取“ =”号) (2), a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高中数学知识点和公式基本 2022 年高 数学 知识点 公式 基本
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内