《2022年高二数学老师讲解的知识点归纳.docx》由会员分享,可在线阅读,更多相关《2022年高二数学老师讲解的知识点归纳.docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年高二数学老师讲解的知识点归纳 学习上的自办法识不行能有外界的力气强加于你,只有自己才能够让自己的学习行为产生自觉性,因此变“要我学为我要学”在高二时期显得更为重要。以下是我给大家整理的高二数学老师讲解的学问点归纳,希望大家能够喜爱! 高二数学老师讲解的学问点归纳1 直线的倾斜角: 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特殊地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180 直线的斜率: 定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。 过两点的直线的斜率公式。
2、 留意: (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90; (2)k与P1、P2的依次无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标干脆求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 直线方程: 1.点斜式:y-y0=k(x-x0) (x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率。x是自变量,直线上随意一点的横坐标;y是因变量,直线上随意一点的纵坐标。 2.斜截式:y=kx+b 直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。该方程叫做直线的斜截式方程,简称斜截式。此斜截式类似于一次函数的表达式。 3.两点式;(
3、y-y1)/(y2-y1)=(x-x1)/(x2-x1) 假如x1=x2,y1=y2,那么两点就重合了,相当于只有一个已知点了,这样不能确定一条直线。 假如x1=x2,y1y2,那么此直线就是垂直于X轴的一条直线,其方程为x=x1,不能表示成上面的一般式。 假如x1x2,但y1=y2,那么此直线就是垂直于Y轴的一条直线,其方程为y=y1,也不能表示成上面的一般式。 4.截距式x/a+y/b=1 对x的截距就是y=0时,x的值,对y的截距就是x=0时,y的值。x截距为a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推导y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-
4、b/k所以截距a=-b/k,b=b带入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。 5.一般式;Ax+By+C=0 将ax+by+c=0变换可得y=-x/b-c/b(b不为零),其中-x/b=k(斜率),c/b=b(截距)。ax+by+c=0在解析几何中更常用,用方程处理起来比较便利。 高二数学老师讲解的学问点归纳2 极值的定义: (1)极大值:一般地,设函数f(x)在点x0旁边有定义,假如对x0旁边的全部的点,都有f(x) (2)微小值:一般地,设函数f(x)在x0旁边有定义,假如对x0旁边的全部的点,都有f(x)f(x0),就说f(x
5、0)是函数f(x)的一个微小值,记作y微小值=f(x0),x0是微小值点。 极值的性质: (1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它旁边点的函数值比较是或最小,并不意味着它在函数的完全的定义域内或最小; (2)函数的极值不是的,即一个函数在某区间上或定义域内极大值或微小值可以不止一个; (3)极大值与微小值之间无确定的大小关系,即一个函数的极大值未必大于微小值; (4)函数的极值点肯定出现在区间的内部,区间的端点不能成为极值点,而使函数取得值、最小值的点可能在区间的内部,也可能在区间的端点。 求函数f(x)的极值的步骤: (1)确定函数的定义区间,求导数f(x); (2)
6、求方程f(x)=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f(x)在方程根左右的值的符号,假如左正右负,那么f(x)在这个根处取得极大值;假如左负右正,那么f(x)在这个根处取得微小值;假如左右不变更符号即都为正或都为负,则f(x)在这个根处无极值。 高二数学老师讲解的学问点归纳3 一、集合概念 (1)集合中元素的特征:确定性,互异性,无序性。 (2)集合与元素的关系用符号=表示。 (3)常用数集的符号表示:自然数集;正整数集;整数集;有理数集、实数集。 (4)集合的表示法:列举法,描述法,韦恩图。 (5)空集是指不含任何元素的集合。 空集是任
7、何集合的子集,是任何非空集合的真子集。 函数 一、映射与函数: (1)映射的概念:(2)一一映射:(3)函数的概念: 二、函数的三要素: 相同函数的推断方法:对应法则;定义域(两点必需同时具备) (1)函数解析式的求法: 定义法(拼凑):换元法:待定系数法:赋值法: (2)函数定义域的求法: 含参问题的定义域要分类探讨; 对于实际问题,在求出函数解析式后;必需求出其定义域,此时的定义域要依据实际意义来确定。 (3)函数值域的求法: 配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式; 逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:; 换元法:通过变量代换转化为能求值域的函数,化归思想; 三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; 基本不等式法:转化成型如:,利用平均值不等式公式来求值域; 单调性法:函数为单调函数,可依据函数的单调性求值域。 数形结合:依据函数的几何图形,利用数型结合的方法来求值域。 高二数学老师讲解的学问点归纳第6页 共6页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页
限制150内