2020届高考数学二轮课时作业:层级二 专题一 第4讲 导数的综合应用与热点问题 .doc
《2020届高考数学二轮课时作业:层级二 专题一 第4讲 导数的综合应用与热点问题 .doc》由会员分享,可在线阅读,更多相关《2020届高考数学二轮课时作业:层级二 专题一 第4讲 导数的综合应用与热点问题 .doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、层级二 专题一 第4讲(文)限时60分钟满分60分解答题(本大题共5小题,每小题12分,共60分)1(2019天津卷节选)设函数f(x)excos x,g(x)为f(x)的导函数(1)求f(x)的单调区间;(2)当x时,证明f(x)g(x)0.解析:(1)由已知,有f(x)ex(cos xsin x)因此,当x(kZ)时,有sin xcos x,得f(x)0,则f(x)单调递减;当x(kZ)时,有sin xcos x,得f(x)0,则f(x)单调递增所以,f(x)的单调递增区间为(kZ),f(x)的单调递减区间为(kZ)(2)证明:记h(x)f(x)g(x),依题意及(1),有g(x)ex(c
2、os xsin x),从而g(x)2exsin x当x时,g(x)0,故h(x)f(x)g(x)g(x)(1)g(x)0.因此,h(x)在区间上单调递减,进而h(x)hf0.所以,当x时,f(x)g(x)0.2(2019大庆三模)设函数f(x)kln x,k0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,)上仅有一个零点解析:(1)由f(x)kln x(k0)得f(x)x.由f(x)0解得x.f(x)与f(x)在区间(0,)上的变化情况如下:x(0,)(,)f(x)0f(x)所以,f(x)的单调递减区间是(0,),单调递增区间是(,);f(x)在x处
3、取得极小值f().(2)证明:由(1)知,f(x)在区间(0,)上的最小值为f().因为f(x)存在零点,所以0,从而ke.当ke时,f(x)在区间(1,)上单调递减,且f()0,所以x是f(x)在区间(1,上的唯一零点当ke时,f(x)在区间(0,)上单调递减,且f(1)0,f()0,所以f(x)在区间(1,上仅有一个零点综上可知,若f(x)存在零点,则f(x)在区间(1,上仅有一个零点3(2019全国卷)已知函数f(x)2sin xxcos xx,f(x)为f(x)的导数(1)证明:f(x)在区间(0,)存在唯一零点;(2)若x0,时,f(x)ax,求a的取值范围解:(1)设g(x)f(x
4、),则g(x)cos xxsin x1,g(x)xcos x.当x时,g(x)0;当x时,g(x)0,所以g(x)在上单调递增,在上单调递减又g(0)0,g0,g()2,故g(x)在(0,)存在唯一零点,所以f(x)在区间(0,)存在唯一零点(2)由题设知f()a,f()0,可得a0,由(1)知,f(x)在(0,)只有一个零点,设为x0,且当x(0,x0)时,f(x)0;当x(x0,)时,f(x)0,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减又f(0)0,f()0,所以当x0,时,f(x)0.又当a0,x0,时,ax0,故f(x)ax.因此,a的取值范围是(,04(2019成
5、都诊断)已知函数f(x)(x22axa2)ln x,aR.(1)当a0时,求函数f(x)的单调区间;(2)当a1时,令F(x)xln x,证明:F(x)e2,其中e为自然对数的底数;(3)若函数f(x)不存在极值点,求实数a的取值范围解析:(1)当a0时,f(x)x2ln x(x0),此时f(x)2xln xxx(2ln x1)令f(x)0,解得xe.函数f(x)的单调递增区间为(e,),单调递减区间为(0,e)(2)证明:F(x)xln xxln xx.由F(x)2ln x,得F(x)在(0,e2)上单调递减,在(e2,)上单调递增,F(x)F(e2)e2.(3)f(x)2(xa)ln x(
6、2xln xxa)令g(x)2xln xxa,则g(x)32ln x,函数g(x)在(0,e)上单调递减,在(e,)上单调递增,g(x)g(e)2ea.当a0时,函数f(x)无极值,2ea0,解得a2e.当a0时,g(x)min2ea0,即函数g(x)在(0,)上存在零点,记为x0.由函数f(x)无极值点,易知xa为方程f(x)0的重根,2aln aaa0,即2aln a0,a1.当0a1时,x01且x0a,函数f(x)的极值点为a和x0;当a1时,x01且x0a,函数f(x)的极值点为a和x0;当a1时,x01,此时函数f(x)无极值综上,a2e或a1.5(2019深圳三模)已知函数f(x)
7、xln x.(1)求函数f(x)的单调区间;(2)证明:对任意的t0,存在唯一的m使tf(m);(3)设(2)中所确定的m关于t的函数为mg(t),证明:当te时,有1.解析:(1)f(x)xln x,f(x)ln x1(x0),当x时,f(x)0,此时f(x)在上单调递减,当x时,f(x)0,f(x)在上单调递增(2)证明:当0x1时,f(x)0,又t0,令h(x)f(x)t,x1,),由(1)知h(x)在区间1,)上为增函数,h(1)t0,h(et)t(et1)0,存在唯一的m,使tf(m)成立(3)证明:mg(t)且由(2)知tf(m),t0,当te时,若mg(t)e,则由f(m)的单调
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020届高考数学二轮课时作业:层级二 专题一 第4讲 导数的综合应用与热点问题 2020 高考 数学 二轮 课时 作业 层级 专题 导数 综合 应用 热点问题
限制150内