2022年山东高考数学知识点总结.docx





《2022年山东高考数学知识点总结.docx》由会员分享,可在线阅读,更多相关《2022年山东高考数学知识点总结.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年山东高考数学知识点总结 现在是进行一轮复习的时候,那么数学学问点有哪些?下面由我为整理有关山东高考数学学问点的资料,感爱好的挚友们来看一下吧! 山东高考数学学问点:算术平均数与几何平均数定理 (1)假如a、bR,那么a2 + b2 2ab(当且仅当a=b时等号) (2)假如a、bR+,那么(当且仅当a=b时等号)推广: 假如为实数,则重要结论 (1)假如积xy是定值P,那么当x=y时,和x+y有最小值2; (2)假如和x+y是定值S,那么当x=y时,和xy有最大值S2/4。 数学学问点3.证明不等式的常用方法: 比较法:比较法是最基本、最重要的方法。 当不等式的两边的差能分解因式或能
2、配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小, 则选择作商比较法;遇到肯定值或根式,我们还可以考虑作平方差。 综合法:从已知或已证明过的不等式动身,依据不等式的性质推导出欲证的不等式。综合法的放缩常常用到均值不等式。 分析法:不等式两边的联系不够清晰,通过找寻不等式成立的充分条件,逐步将欲证的不等式转化,直到找寻到易证或已知成立的结论。 山东高考数学学问点:函数部分 1. 函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x) ; (2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数); (3)推断函数奇偶性可用定义的等价形式
3、:f(x)f(-x)=0或 (f(x)0); (4)若所给函数的解析式较为困难,应先化简,再推断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2. 复合函数的有关问题 (1)复合函数定义域求法:若已知 的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的定义域为a,b,求 f(x)的定义域,相当于xa,b时,求g(x)的值域(即 f(x)的定义域);探讨函数的问题肯定要留意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 山东 高考 数学 知识点 总结

限制150内