2020届高考数学山东省二轮复习训练习题:专题五第3讲第2课时 圆锥曲线中的定点、定值、存在性问题 .docx
《2020届高考数学山东省二轮复习训练习题:专题五第3讲第2课时 圆锥曲线中的定点、定值、存在性问题 .docx》由会员分享,可在线阅读,更多相关《2020届高考数学山东省二轮复习训练习题:专题五第3讲第2课时 圆锥曲线中的定点、定值、存在性问题 .docx(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第2课时圆锥曲线中的定点、定值、存在性问题解答题 1.(2019兰州诊断)已知曲线C上的任意一点到直线l:x=-12的距离与到点F12,0的距离相等.(1)求曲线C的方程;(2)若过P(1,0)的直线与曲线C相交于A,B两点,Q(-1,0)为定点,设直线AQ的斜率为k1,直线BQ的斜率为k2,直线AB的斜率为k,证明:1k12+1k22-2k2为定值.解析(1)由条件可知,此曲线是焦点为F的抛物线,设抛物线方程为y2=2px(p0),则p2=12,p=1,曲线C的方程为y2=2x.(2)证明:由已知得,直线AB的方程为y=k(x-1)(k0),由y=k(x-1),y2=2x可得ky2-2y-2
2、k=0.设Ay122,y1,By222,y2,则y1+y2=2k,y1y2=-2.k1=y1y122+1=2y1y12+2,k2=y2y222+1=2y2y22+2,1k12+1k22=(y12+2)24y12+(y22+2)24y22=(y12+2)2y22+(y22+2)2y124y12y22=y14y22+y24y12+8y12y22+4(y12+y22)4y12y22=8(y12+y22)+3216=(y1+y2)2-2y1y2+42=4k2+82=2k2+4.1k12+1k22-2k2=4,为定值.2.(2019石家庄质检)已知椭圆C:x2a2+y2b2=1(ab0)的离心率为32,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020届高考数学山东省二轮复习训练习题:专题五第3讲第2课时圆锥曲线中的定点、定值、存在性问题 2020 高考 数学 山东省 二轮 复习 训练 习题 专题 课时 圆锥曲线 中的 定点 存在 问题
链接地址:https://www.taowenge.com/p-2547612.html
限制150内