2022年高中数学通用模型解题方法 .pdf
《2022年高中数学通用模型解题方法 .pdf》由会员分享,可在线阅读,更多相关《2022年高中数学通用模型解题方法 .pdf(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、优秀学习资料欢迎下载13. 反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(反解 x;互换x、 y;注明定义域)如:求函数的反函数f xxxxx( )1002(答:)fxxxxx1110( )14. 反函数的性质有哪些?反函数性质:1、反函数的定义域是原函数的值域(可扩展为反函数中的x 对应原函数中的y)2、反函数的值域是原函数的定义域(可扩展为反函数中的y 对应原函数中的x)3、反函数的图像和原函数关于直线=x 对称(难怪点(x,y)和点( y,x)关于直线y=x 对称互为反函数的图象关于直线yx 对称;保存了原来函数的单调性、奇函数性;设的定义域为,值域为,则yf(x)A
2、CaAbCf(a) = bf1( )baff afbaf fbf ab111( )( )( )( ),由反函数的性质,可以快速的解出很多比较麻烦的题目,如( 04. 上 海 春 季 高 考 ) 已 知 函 数)24(log)(3xxf, 则 方 程4)(1xf的 解x_.1 对于这一类题目,其实方法特别简单,呵呵。 已知反函数的y,不就是原函数的x 吗?那代进去阿, 答案是不是已经出来了呢?(也可能是告诉你反函数的x 值,那方法也一样,呵呵。自己想想,不懂再问我15 . 如何用定义证明函数的单调性?(取值、作差、判正负)判断函数单调性的方法有三种:(1) 定义法:根据定义,设任意得x1,x2,
3、找出 f(x1),f(x2)之间的大小关系可以变形为求1212()()f xf xxx的正负号或者12()()f xf x与 1 的关系(2) 参照图象:若函数f(x) 的图象关于点 (a ,b) 对称,函数f(x) 在关于点 (a ,0) 的对称区间具有相同的单调性;(特例:奇函数)若函数 f(x) 的图象关于直线xa 对称,则函数f(x) 在关于点 (a,0) 的对称区间里具有相反的单调性。 (特例:偶函数)(3) 利用单调函数的性质:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 13 页优秀学习资料欢迎下载函数 f(x) 与 f
4、(x)c(c 是常数 )是同向变化的函数 f(x) 与 cf(x)(c是常数 ) ,当 c0 时,它们是同向变化的;当c0 时,它们是反向变化的。如果函数f1(x) ,f2(x) 同向变化,则函数f1(x)f2(x) 和它们同向变化; (函数相加)如果正值函数f1(x) ,f2(x)同向变化,则函数f1(x)f2(x)和它们同向变化;如果负值函数f1(2) 与 f2(x) 同向变化, 则函数 f1(x)f2(x)和它们反向变化;(函数相乘)函数 f(x) 与1( )fx在 f(x)的同号区间里反向变化。 若 函 数u (x) , x , 与 函 数y F(u) , u ( ) , ( ) 或u
5、 ( ), ( ) 同向变化,则在 , 上复合函数yF (x)是递增的;若函数 u(x),x, 与函数 yF(u) ,u ( ),() 或 u ( ) ,() 反向变化,则在 , 上复合函数yF(x) 是递减的。(同增异减)若函数 yf(x) 是严格单调的, 则其反函数xf1(y) 也是严格单调的, 而且,它们的增减性相同。如:求的单调区间yxxlog1222(设,由则uxxux22002且,如图:log12211uuxu O 1 2 x 当,时,又,xuuy(log0112当,时,又,xuuy)log1212)16. 如何利用导数判断函数的单调性?f(g) g(x) fg(x) f(x)+g
6、(x) f(x)*g(x) 都是正数增增增增增增减减/ / 减增减/ / 减减增减减精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 13 页优秀学习资料欢迎下载在区间,内,若总有则为增函数。(在个别点上导数等于abfxf x( )( )0零,不影响函数的单调性),反之也对,若呢?fx()0如:已知,函数在,上是单调增函数,则的最大af xxaxa013( )值是()A. 0 B. 1 C. 2 D. 3 (令 fxxaxaxa()333302则或xaxa33由已知在,上为增函数,则,即f xaa( )1313a 的最大值为3)17. 函
7、数 f(x) 具有奇偶性的必要(非充分)条件是什么?(f(x)定义域关于原点对称)若总成立为奇函数函数图象关于原点对称fxf xf x()( )( )若总成立为偶函数函数图象关于轴对称fxf xf xy()( )( )注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。( )若是奇函数且定义域中有原点,则。2f(x)f(0)0如:若为奇函数,则实数f xaaaxx( )2221(为奇函数,又,f xxRRf( )( )000即,)aaa22210100又如:为定义在,上的奇函数,当,时,f xxf xxx( )()()( )
8、1101241求在,上的解析式。f x( )11精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 13 页优秀学习资料欢迎下载(令,则,xxfxxx1001241()又为奇函数,f xf xxxxx( )( )241214又,)ff xxxxxxxx( )( )()0024110024101判断函数奇偶性的方法一、定义域法一个函数是奇 (偶)函数, 其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数. . 二、奇偶函数定义法在给定函数的定义域关于原点对称的前提下,计算)( xf,然
9、后根据函数的奇偶性的定义判断其奇偶性 . 这种方法可以做如下变形f(x)+f(-x) =0 奇函数f(x)-f(-x)=0 偶函数f(x)1 偶函数f(-x)f(x)1 奇函数f(-x)三、复合函数奇偶性18. 你熟悉周期函数的定义吗?(若存在实数(),在定义域内总有,则为周期TTf xTf xf x0( )( )函数, T 是一个周期。 )如:若,则f xaf x( )f(g) g(x) fg(x) f(x)+g(x) f(x)*g(x) 奇奇奇奇偶奇偶偶非奇非偶奇偶奇偶非奇非偶奇偶偶偶偶偶精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,
10、共 13 页优秀学习资料欢迎下载(答:是周期函数,为的一个周期)f xTaf x( )( )2我们在做题的时候, 经常会遇到这样的情况:告诉你 f(x)+f(x+t)=0, 我们要马上反应过来,这时说这个函数周期2t. 推导:()()0()(2 )()(2 )0fxfxtfxfxtfxtfxt,同时可能也会遇到这种样子:f(x)=f(2a-x), 或者说 f(a-x)=f(a+x). 其实这都是说同样一个意思:函数f(x) 关于直线对称,对称轴可以由括号内的2 个数字相加再除以2 得到。比如,f(x)=f(2a-x), 或者说 f(a-x)=f(a+x) 就都表示函数关于直线x=a 对称。(
11、)()()()()( )(2)(2)(2)( )(2)2,222 ,( )(22 )( )(22 ),( )2|(,f xxaxbf axf axf bxf bxf xfaxfaxfbxf xfbxtaxbxtba f tf tbaf xf xbaf xbaa b又如:若图象有两条对称轴,即,令则即所以 函数以为周期 因不知道的大小关系为保守起见 我加了一个绝对值如:19. 你掌握常用的图象变换了吗?f xfxy( )()与的图象关于轴 对称联想点( x,y) ,(-x,y) f xf xx( )( )与的图象关于轴 对称联想点( x,y),(x,-y) f xfx( )()与的图象关于 原点
12、 对称联想点( x,y),(-x,-y) f xfxyx( )( )与的图象关于直线对称1联想点( x,y),(y,x) f xfaxxa( )()与的图象关于直线对称2联想点( x,y),(2a-x,y) f xfaxa( )()()与的图象关于 点,对称20联想点( x,y),(2a-x,0) 将图象左移个单位右移个单位yf xa aa ayf xayf xa( )()()()()00精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 13 页优秀学习资料欢迎下载上移个单位下移个单位b bb byf xabyf xab()()()()0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高中数学通用模型解题方法 2022 年高 数学 通用 模型 解题 方法
限制150内