2021高三数学北师大版(文)一轮教师用书:第3章 第6节 利用导数解决函数的零点问题 .doc
《2021高三数学北师大版(文)一轮教师用书:第3章 第6节 利用导数解决函数的零点问题 .doc》由会员分享,可在线阅读,更多相关《2021高三数学北师大版(文)一轮教师用书:第3章 第6节 利用导数解决函数的零点问题 .doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第六节利用导数解决函数的零点问题(对应学生用书第52页)考点1判断、证明或讨论函数零点的个数判断函数零点个数的三种方法直接法令f(x)0,则方程解的个数即为零点的个数画图法转化为两个易画出图像的函数,看其交点的个数即可定理法利用零点存在性定理判定,可结合最值、极值去解决(2019全国卷)已知函数f(x)2sin xxcos xx,f(x)为f(x)的导数(1)证明:f(x)在区间(0,)存在唯一零点;(2)若x0,时,f(x)ax,求a的取值范围解(1)证明:设g(x)f(x),则g(x)cos xxsin x1,g(x)xcos x.当x时,g(x)0;当x时,g(x)0,所以g(x)在上单
2、调递增,在上单调递减又g(0)0,g0,g()2,故g(x)在(0,)存在唯一零点所以f(x)在区间(0,)存在唯一零点(2)由题设知f()a,f()0,可得a0.由(1)知,f(x)在(0,)只有一个零点,设为x0,且当x(0,x0)时,f(x)0;当x(x0,)时,f(x)0,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减又f(0)0,f()0,所以当x0,时,f(x)0.又当a0,x0,时,ax0,故f(x)ax.因此,a的取值范围是(,0根据参数确定函数零点的个数,解题的基本思想是“数形结合”,即通过研究函数的性质(单调性、极值、函数值的极限位置等),作出函数的大致图像,
3、然后通过函数图像得出其与x轴交点的个数,或者两个相关函数图像交点的个数,基本步骤是“先数后形”设函数f(x)ln x,mR.(1)当me(e为自然对数的底数)时,求f(x)的极小值;(2)讨论函数g(x)f(x)零点的个数解(1)由题意知,当me时,f(x)ln x(x0),则f(x),当x(0,e)时,f(x)0,f(x)在(0,e)上单调递减;当x(e,)时,f(x)0,f(x)在(e,)上单调递增,当xe时,f(x)取得极小值f(e)ln e2,f(x)的极小值为2.(2)由题意知g(x)f(x)(x0),令g(x)0,得mx3x(x0)设(x)x3x(x0),则(x)x21(x1)(x
4、1)当x(0,1)时,(x)0,(x)在(0,1)上单调递增;当x(1,)时,(x)0,(x)在(1,)上单调递减x1是(x)的唯一极值点,且是极大值点,因此x1也是(x)的最大值点,(x)的最大值为(1),又(0)0.结合y(x)的图像(如图),可知,当m时,函数g(x)无零点;当m时,函数g(x)有且只有一个零点;当0m时,函数g(x)有两个零点;当m0时,函数g(x)有且只有一个零点综上所述,当m时,函数g(x)无零点;当m或m0时,函数g(x)有且只有一个零点;当0m时,函数g(x)有两个零点考点2已知函数零点存在情况求参数解决此类问题常从以下两个方面考虑:(1)根据区间上零点的个数情
5、况,估计出函数图像的大致形状,从而推导出导数需要满足的条件,进而求出参数满足条件;(2)先求导,通过求导分析函数的单调情况,再依据函数在区间内的零点情况,推导出函数本身需要满足的条件,此时,由于函数比较复杂,常常需要构造新函数,通过多次求导,层层推理得解设函数f(x)x2axln x(aR)(1)当a1时,求函数f(x)的单调区间;(2)若函数f(x)在上有两个零点,求实数a的取值范围解(1)函数f(x)的定义域为(0,),当a1时,f(x)2x1,令f(x)0,得x(负值舍去),当0x时,f(x)0;当x时,f(x)0.f(x)的单调递增区间为,单调递减区间为.(2)令f(x)x2axln
6、x0,得ax.令g(x)x,其中x,则g(x)1,令g(x)0,得x1,当x1时,g(x)0;当1x3时,g(x)0,g(x)的单调递减区间为,单调递增区间为(1,3, g(x)ming(1)1,函数f(x)在上有两个零点,g3ln 3,g(3)3,3ln 33,实数a的取值范围是.与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图像与x轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图像的交点问题1.设函数f(x)ln xx,若关于x的方程f(x)x2xm在区间1,3上有解,求m的取值范围解方程f(x)
7、x2xm在区间1,3上有解,即ln xx2xm在区间1,3上有解令h(x)ln xx2x,则h(x)2x.当x1,3时,h(x),h(x)随x的变化情况如下表:x13h(x)0h(x)极大值ln 32h(1),h(3)ln 32,hln ,当x1,3时,h(x),m的取值范围为2(2019贵阳摸底考试)已知函数f(x)kxln x(k0)(1)若k1,求f(x)的单调区间;(2)若函数f(x)有且只有一个零点,求实数k的值解(1)若k1,则f(x)xln x,定义域为(0,),则f(x)1,由f(x)0,得x1;由f(x)0,得0x1,f(x)的单调递减区间为(0,1),单调递增区间为(1,)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021高三数学北师大版文一轮教师用书:第3章 第6节利用导数解决函数的零点问题 2021 数学 北师大 一轮 教师 利用 导数 解决 函数 零点 问题
限制150内