2022年最新青岛版九年级上册数学第一章图形的相似学案 .pdf
《2022年最新青岛版九年级上册数学第一章图形的相似学案 .pdf》由会员分享,可在线阅读,更多相关《2022年最新青岛版九年级上册数学第一章图形的相似学案 .pdf(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载九年级上册数学第1 章图形的相似1.1 相似多边形学习目标:1、了解相似形、相似多边形的有关概念和性质. 2、能举例说明相似形.能准确的用“”符号表示相似多边形的相似及对应关系. 3能说出相似三角形的相似比,能根据相似比求长度,培养学生的运用能力。重点:深刻理解和掌握相似多边形的对应点、对应角、对应边以及表示方式. 难点:找对应边及对应角。根据定义求线段长和角度。复习旧知:1什么叫做全等三角形?它在形状上、大小上有何特征?2两个全等三角形的对应边和对应角有什么关系?预习效果反馈:下面是中华人民共和国国旗,上有五颗五角星,它们形状相同吗?大小相等吗?在现实生活中,你还见过形状相同
2、,但大小未必相等的图形吗?探究新知:1. 情境引入(1) 、 从 08 奥运会游泳馆水立方和自由体操场地中抽象出的两个正方形形状相同吗?两个正方形边、角之间的关系如下: 角:_;A B C D A1 B1 C1 D1 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 19 页学习必备欢迎下载边:_;(2)以上两个五边形相似吗?利用直尺和量角器想法说明它们是否相似. 如果两个多边形相似,那么它们的对应角有什么关系?对应边呢?2. 生成概念定义:叫相似形定义:叫做相似多边形. 记法:. 叫做相似比 . 相似多边形的性质:如果两个多边形相似,那
3、么它们的对应角,对应边相似多边形面积的比等于 . 3、议一议:观察下面两组图形,图中的两个图形相似吗?为什么?图中的两个图形相似吗?为什么?如果两个多边形不相似,那么它们的对应角可能都相等吗?对应边可能都成比例吗?你能说出全等形与相似形的关系吗?如何表示多边形相似?记两个多边形相似时,应注意什么?(三)深化概念1.填空 : 如图所示的两个矩形相似,它们的相似比是,A1D1=. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 19 页学习必备欢迎下载2、判断正误 (错误的请举例说明) :1.两个等边三角形一定相似. ()2.两个全等多边形
4、一定相似. ()3.各边对应成比例的两个四边形一定相似. ()4.各角对应相等的两个四边形一定相似.()(四)当堂达标检测1、两个相似多边形一组对应边分别为3cm,4.5cm,那么它们的相似比为()A32B23C94D492.在矩形 ABCD 中,E,F 分别为 AB , CD 的中点, 如果矩形 ABCD 矩形 EFCB , 那么它们的相似比为()A2 B 22 C 2 D 213、一个多边形的边长为2,3,4,5,6,另一个和它相似的多边形的最长边为24,则这个多边形的最短边长为()A6 B 8 C 12 D 104、E,F 分别为矩形ABCD 的边 AD ,BC的中点,若矩形ABCD 矩
5、形 EABF ,AB 1,求矩形ABCD 的面积 .六:课堂总结,提高认识本节收获:本节不足:教学反思:A B C D A1 B1 C1 D1 2 4 3 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 19 页学习必备欢迎下载 1.2怎样判定三角形相似 (1) 学习目标知识与技能:1、初步掌握相似三角形的判定定理(1) ,并且能够运用它们进行简单的证明及计算2、通过习题的引申练习,培养学生解决问题的能力3、渗透图形运动的思想,培养学生思维能力过程与方法:经历相似三角形与全等三角形的类比过程,进一步体验类比思想、特殊与一般的辨证思想情感
6、态度与价值观:积极参与数学活动,体验数学活动充满探索与创造,形成实事求是的态度及独立思考的习惯教学过程一、新课讲解:从图( 1)可知,当AD BECF,且 AB=BC 时,则 DE=EF,也就是1BCABEFDE接着象教材一样,说明32BCAB时,也有32BCABEFDEBCAB为有理数时,上面的结论也成立。BCAB为无理数时,上面的结论也成立。综上可得两条直线被一组平行线所截,所得的对应线段成比例. 说明:(1)画出定理的各种基本图形,对照图形写出相应的结论。(2)写出其它的对应线段成比例的情况。对应线段成比例可用下面的语言形象表示:右全左全右上左上全上全上下上下上,等等。(3)由下面的定理
7、的基本图形(1)和( 2)得出推论( 1)(2)(3)(4)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 19 页学习必备欢迎下载推论:平行于三角形一边,并且与其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例基本图形:二、示例: 如图,在 ABC中, EFDC,DE BC问: AF/ADAD/AB吗?为什么?三、课堂练习:1,已知,如图(10) ,D,E,F分别在ABC的边AB,AC,BC上,且FCED是平行四边形,若BD=7.2,BF=6,AC=8 。AD=4, 求的周长。2,已知,如图(11) ,在 ABC 中,
8、 D 是 AB 的中点, F 是 BC 延长线上的点,连结DF 交 AC 于 E,求证: CF:BF=CE:AE. 四、回顾总结:本节收获:本节不足:五、作业: P11,1、2 教学反思:A 型基本图形X 型基本图形A B C E D F 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 19 页学习必备欢迎下载AB1BC1CC1ABCB1C1B1ABCABCC1B11.2 相似三角形的判定( 2)学习目标知识与技能:1、初步掌握相似三角形的判定定理(1) ,并且能够运用它们进行简单的证明及计算2、通过习题的引申练习,培养学生解决问题的能
9、力3、渗透图形运动的思想,培养学生思维能力过程与方法:经历相似三角形与全等三角形的类比过程,进一步体验类比思想、特殊与一般的辨证思想情感态度与价值观:积极参与数学活动,体验数学活动充满探索与创造,形成实事求是的态度及独立思考的习惯学习重点相似三角形判定定理(1)学习难点理解相似三角形判定(1)的探究过程,并能归纳出“两角对应相等,两三角形相似”学习过程一、创设问题情境:在图一、图二中,即在相似三角形的预备定理中我们知道,由于BC B1C1,ABC A B1 C1图一图二若将 A B1 C1旋转一定的角度或将AB1与 AC边重合,将AC1边与 AB重合,如图三、图四,而ABC与AB1C1由于只改
10、变了AB1C1的位置,所以ABC与 AB1C1肯定仍然相似. 那么,用什么方法可以判定两个三角形的相似?图三图四判定方法一:_ 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 19 页学习必备欢迎下载ABCABC1ABCED结合图形用数学符号语言表示: A= A , B= B ABC AB C二、精讲例题例 1:已知: ?ABC和?DEF中, A=40, B=80, E=80, F=60,求证: ?ABC ?DEF. 例 2:自学课本13 页例 1 三、自我训练1、下列三角形中哪些是相似的?2、若( 4)与( 1)相似,求 A的度数3、
11、已知:如图,在ABC中,点 D、E分别在 AB 、AC上,且 1=B (1)求证: ADE ABC (2)若 A=50, C=70,求 1 的度数(3)若 AE=4 ,BE=2 ,求 AC的长四、知识拓展140652407546534565精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 19 页学习必备欢迎下载如图所示,在直角三角形ABC中, C=90 ,能否过直角三角形的一个顶点画一条直线l ,使分成的两个三角形相似 . 若没有可能,请说明理由;若有可能,请画出图形,并加以说明. 五、小结(1)知识上的收获(2)数学思想方法的领悟(3
12、)能力上的提高(4)谈谈学习过程的体验和感受,也可以对本堂课进行质疑六、当堂测试1、判断题: (1)两个顶角相等的等腰三角形是相似的三角形. () (2)两个等腰直角三角形是相似三角形. () (3)底角相等的两个等腰三角形是相似三角形. () (4)两个直角三角形一定是相似三角形. () (5)一个钝角三角形和一个锐角三角形有可能相似. () (6)有一个角相等的两个直角三角形是相似三角形. () (7)有一个锐角相等的两个直角三角形是相似三角形. () (8)三角形的三条中位线围成的三角形与原三角形相似. () (9)所有的正三角形都相似. ()2如图, 、分别为、 的中点, 、 交于点,
13、 则 ADE _,相似比 K1=_;ODE _,教学反思:ACBOEDCBA精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 19 页学习必备欢迎下载30365445FECBA1.2 怎样判定三角形相似( 3)学习目标1、知识目标:通过激励引导 类比 讨论,使学生自己发现、总结相似三角形判定的第二预备定理和三角形相似的判定定理1. 2、能力目标:在课堂教学过程中,培养学生深入思考,适当变式和思维发散的能力,使学生感受数学对称美,发展学生创造性. 3、情感、态度与价值观:培养学生积极的思考、动手、观察的能力,使学生感悟几何知识在生活中的价值
14、重难点、关键1重点:会应用相似三角形的两个判定方法2难点:怎样选择合格的判定方法来判定两个三角形相似3关键:抓住判定方法的条件,通过已知条件的分析,?把握图形的结构特点学习过程一、自主探究1、阅读教材14 页观察与思考,总结相似三角形的判定方法二:_ . 2、证明图中 AEB和 FEC相似二、自我训练在 ABC 中,E 是 AB 上一点 ,D 是 AC 上一点 ,AE=6cm,AC=15cm ,AD=8cm,AB=20cm. 求证 :AED ACB. 三、 合作互动阅读教材16 页观察与思考,总结相似三角形的判定方法三:。四、精讲例题自学 17 页例 3,写出解题过程. 五、拓展延伸精选学习资
15、料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 19 页学习必备欢迎下载如图,已知Q是正方形ABCD 中 CD边的中点, P是 BC边上一点,且BP=3PC ,?请问 DAQ 是否与 PQC相似?说明理由QDCPBA当堂达标训练一、填空题1、 如图 ,在 ABC 中,点 D、E 分别在边 AB 、AC 上,已知 AB=6,AC=9 ,BC=12, AD=3 , AE=2. 那么DE= . 2、一个直角三角形的两边长分别为3 和 6,另一个直角三角形的两边长分别为2 和 4,那么这两个直角三角形相似 .(填“ 一定 ” 、“ 不一定 ” 或“ 一定
16、不 ” ).三、解答题1、已 知 : ABC= CDB=90 , AC=a, BC=b, 当 BD 与 a、 b 之 间 满 足 怎 样 的 关 系 时 , ABC CDB ?( 10 分)课堂总结,提高认识 1教师提问:(1)相似三角形的判定有几种方法?如何选择这些方法?(2)相似三角形具有哪些性质?通常可以用来证明哪些问题?(3)你通过这两节课内容的学习,在推理方面是否有提高? 2归纳:判定三角形相似的主要思路:(1)有两对边成比例的,一般有两个途径:一是夹角相等;?二是找第三边成比例(2)有一对等角的,一般有两个途径:一是找另一对等角;?二是找到夹边成比例教学反思:1.2 怎样判定三角形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年最新青岛版九年级上册数学第一章图形的相似学案 2022 最新 青岛 九年级 上册 数学 第一章 图形 相似
限制150内